
Deep Learning
lecture 4

Energy-Based Model
Yi Wu, IIIS

Spring 2025
Mar-10

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 1

Logistics

• Coding Project 2 due in 1 week
• Use local compute for coding & Colab for testing
• Cloud for long-term training
• Any questions can be posted in Dingding channel
• Be aware of your model size and computation (flops)!
• Check out those famous models and works!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 2

Story So Far

• History
• Lecture 1

• first neural network (1943) to recent advances in deep learning

• Supervised Learning (Classification)
• Lecture 2

• MLP and basic components; Backpropagation
• Lecture 3

• Algorithms, Tricks and Architecture

• Discriminative Model
• 𝑃𝑃(𝑦𝑦|𝑋𝑋)
• Labeled data; 𝑋𝑋 → 𝑦𝑦

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 3

Afterwards

• What if we want to generate 𝑋𝑋?
• E.g., Ask the neural network to generate a cat!

• Generative Model
• 𝑃𝑃 𝑋𝑋,𝑦𝑦 = 𝑃𝑃 𝑦𝑦 ∗ 𝑃𝑃(𝑋𝑋|𝑦𝑦)
• Or just 𝑃𝑃(𝑋𝑋)

• Lecture 4~7
• Deep Generative Models
• Different approaches to model 𝑃𝑃(𝑋𝑋)

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 4

Today’s Lecture: Energy-Based Models

• A particularly flexible and general form of generative model

• Part 1: Hopfield Network
• The simplest model that can memorize and generate patterns

• Part 2: Boltzmann Machine
• The first deep generative model

• Part 3: General Energy-Based Models & Sampling MethodsDe
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 5

Today’s Lecture: Energy-Based Models

• A particularly flexible and general form of generative model

• Part 1: Hopfield Network
• The simplest model that can memorize and generate patterns

• Part 2: Boltzmann Machine
• The first deep generative model

• Part 3: General Energy-Based Models & Sampling MethodsDe
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 6

Classification

• Recap: Classification
• Layer-by-layer computation
• Computation Graph: Directed Acyclic Graph
• Feedforward networks

• What about …
• Loops!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 7

A Loopy Network

• A “fully-connected” network
• Each neuron receives inputs from all the other neurons
• 𝑦𝑦𝑖𝑖 = +1 𝑜𝑜𝑜𝑜 − 1 with hard thresholding

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 8

Hopfield Network

• A “fully-connected” network
• Each neuron receives inputs from all the other neurons
• 𝑦𝑦𝑖𝑖 = +1 𝑜𝑜𝑜𝑜 − 1 with hard thresholding
• Symmetric weights

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 9

Hopfield Network

• A Hopfield Network may not be stable!
• At each time each neuron receives a “field” 𝑧𝑧𝑖𝑖 = ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖
• If the sign of neuron matches the sign of the field, it flips

𝑦𝑦𝑖𝑖 ← −𝑦𝑦𝑖𝑖 if 𝑦𝑦𝑖𝑖 �
𝑗𝑗≠𝑖𝑖

𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 < 0

• This can further cause other neurons to flip!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 10

Hopfield Network

• Neurons flip if its sign does not match its local “field”
• 𝑦𝑦𝑖𝑖 ← −𝑦𝑦𝑖𝑖 if 𝑦𝑦𝑖𝑖 ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 < 0 for all neurons
• Repeat until no neuron flips
• Will this process converge?

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 11

Hopfield Network

• Let 𝑦𝑦𝑖𝑖− denote the value of 𝑦𝑦𝑖𝑖 before a “flip”
• Let 𝑦𝑦𝑖𝑖+ denote the value of 𝑦𝑦𝑖𝑖 after a “flip”
• If 𝑦𝑦𝑖𝑖− ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 ≥ 0, nothing happen

𝑦𝑦𝑖𝑖+ �
𝑗𝑗≠𝑖𝑖

𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 − 𝑦𝑦𝑖𝑖− �
𝑗𝑗≠𝑖𝑖

𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 = 0

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 12

Hopfield Network

• Let 𝑦𝑦𝑖𝑖− denote the value of 𝑦𝑦𝑖𝑖 before a “flip”
• Let 𝑦𝑦𝑖𝑖+ denote the value of 𝑦𝑦𝑖𝑖 after a “flip”
• If 𝑦𝑦𝑖𝑖− ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 ≥ 0, nothing happen

• If 𝑦𝑦𝑖𝑖− ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 < 0, 𝑦𝑦𝑖𝑖+ = −𝑦𝑦𝑖𝑖−

𝑦𝑦𝑖𝑖+ �
𝑗𝑗≠𝑖𝑖

𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 − 𝑦𝑦𝑖𝑖− �
𝑗𝑗≠𝑖𝑖

𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 = 2𝑦𝑦𝑖𝑖+ �
𝑗𝑗≠𝑖𝑖

𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 13

Hopfield Network

• Let 𝑦𝑦𝑖𝑖− denote the value of 𝑦𝑦𝑖𝑖 before a “flip”
• Let 𝑦𝑦𝑖𝑖+ denote the value of 𝑦𝑦𝑖𝑖 after a “flip”
• If 𝑦𝑦𝑖𝑖− ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 ≥ 0, nothing happen

• If 𝑦𝑦𝑖𝑖− ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 < 0, 𝑦𝑦𝑖𝑖+ = −𝑦𝑦𝑖𝑖−

𝑦𝑦𝑖𝑖+ �
𝑗𝑗≠𝑖𝑖

𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 − 𝑦𝑦𝑖𝑖− �
𝑗𝑗≠𝑖𝑖

𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 = 2𝑦𝑦𝑖𝑖+ �
𝑗𝑗≠𝑖𝑖

𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 Positive!

Every flip increases
2𝑦𝑦𝑖𝑖(∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑗𝑗𝑗𝑗 𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖)

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 14

Hopfield Network

• Consider the sum over every pair of neurons (assume 𝑤𝑤𝑖𝑖𝑖𝑖 = 0)

𝐷𝐷 𝑦𝑦1, … ,𝑦𝑦𝑁𝑁 = �
𝑖𝑖<𝑗𝑗

𝑦𝑦𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗 + 𝑦𝑦𝑖𝑖𝑏𝑏𝑖𝑖

• Any flip that changes 𝑦𝑦𝑖𝑖− to 𝑦𝑦𝑖𝑖+ increases 𝐷𝐷(𝑦𝑦1, … ,𝑦𝑦𝑁𝑁)

Δ𝐷𝐷 = 𝐷𝐷 … ,𝑦𝑦𝑖𝑖+, … − 𝐷𝐷 … , 𝑦𝑦𝑖𝑖−, … = 2𝑦𝑦𝑖𝑖+ �
𝑗𝑗≠𝑖𝑖

𝑤𝑤𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 > 0

• Convergence?

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 15

Hopfield Network

• 𝐷𝐷 is upper-bounded (we only change 𝑦𝑦𝑖𝑖)
𝐷𝐷 𝑦𝑦1, … ,𝑦𝑦𝑁𝑁 = �

𝑖𝑖<𝑗𝑗

𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 + �
𝑖𝑖

𝑏𝑏𝑖𝑖𝑦𝑦𝑖𝑖 ≤�
𝑖𝑖<𝑗𝑗

𝑤𝑤𝑖𝑖𝑖𝑖 + �
𝑖𝑖

|𝑏𝑏𝑖𝑖|

• Δ𝐷𝐷 is lower-bounded

Δ𝐷𝐷min = min
𝑖𝑖,{𝑦𝑦𝑗𝑗}

2 �
𝑗𝑗

𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖 > 0

• {𝑦𝑦𝑖𝑖} converges with a finite number of iterations!
• {𝑦𝑦𝑖𝑖}: state

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 16

Hopfield Network

• The Energy of Hopfield Network

𝐸𝐸 = −𝐷𝐷 = −�
𝑖𝑖<𝑗𝑗

𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 −�
𝑖𝑖

𝑏𝑏𝑖𝑖𝑦𝑦𝑖𝑖

• The evolution of Hopfield network always decreases its energy!

• The concept of Energy
• Magnetic dipoles in a disordered magnetic material
• Each dipole tries to align itself to the local field
• Field at a particular dipole 𝑓𝑓(𝑝𝑝𝑖𝑖), 𝑝𝑝𝑖𝑖 is the position of 𝑥𝑥𝑖𝑖

𝑓𝑓 𝑝𝑝𝑖𝑖 = �
𝑗𝑗≠𝑖𝑖

𝐽𝐽𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖

• Ising model of magnetic materials (Ising and Lenz, 1924)

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 17

Hopfield Network: Pattern Generation

• The Hopfield network (simplified)

𝐸𝐸 = −�
𝑖𝑖<𝑗𝑗

𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗

• Network evolution arrives at a local optimum in the energy contour
• Every change in the network state 𝑌𝑌 decreases the energy 𝐸𝐸

• Any small jitter from this stable state returns it to the stable state

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 18

Hopfield Network: Pattern Generation

• The Hopfield network (simplified)

𝐸𝐸 = −�
𝑖𝑖<𝑗𝑗

𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗

• Each local optimum state is a “stored” pattern
• If the network is initialized close to a stored pattern, it evolves to the pattern

• Associated Memory (content addressable memory)

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 19

Hopfield Network: Pattern Generation

• Image Reconstruction by Hopfield Network (1982)

• How can we store the desired patterns?
De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 20

Hopfield Network: Training

• Let’s teach the network to store this image
• 𝑁𝑁 pixels  𝑁𝑁 neurons
• Symmetric weights  1

2
𝑁𝑁(𝑁𝑁 − 1) parameters to learn

• We omit bias terms for simplicity

• Design {𝑤𝑤𝑖𝑖𝑖𝑖} such that the energy is at a local minimum for a desired
pattern 𝑦𝑦

• Hebbian Learning Rule 𝑤𝑤𝑖𝑖𝑖𝑖 ← 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 (1949)

• 𝐸𝐸 = −∑𝑖𝑖<𝑗𝑗 𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 = −1
2
𝑁𝑁(𝑁𝑁 − 1)  lowest possible energy!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 21

Hopfield Network: Training

• Let’s teach the network to store this image
• 𝑁𝑁 pixels  𝑁𝑁 neurons
• Symmetric weights  1

2
𝑁𝑁(𝑁𝑁 − 1) parameters to learn

• We omit bias terms for simplicity

• Design {𝑤𝑤𝑖𝑖𝑖𝑖} such that the energy is at a local minimum for a desired
pattern 𝑦𝑦

• Redundancy! 𝑦𝑦 & − 𝑦𝑦 will be both stored

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 22

Hopfield Network: Training

• What if we want to store multiple patterns?
• 𝑃𝑃 = {𝑦𝑦𝑝𝑝} 𝑁𝑁𝑝𝑝 patterns
• Hebbian Learning Rule

𝑤𝑤𝑖𝑖𝑖𝑖 =
1
𝑁𝑁𝑝𝑝

�
𝑝𝑝

𝑦𝑦𝑖𝑖
𝑝𝑝𝑦𝑦𝑗𝑗

𝑝𝑝

• The issue of Hebbian Learning
• Spurious local optima

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 23

Hopfield Network: Training

• Example: 4-dimensional Hopfield Network with Hebbian Learning
• Three patterns to store

• Let’s assume the value of each neuron is 1 or -1
“Fake” memory

Disappeared!

Left:
desired
patterns

Right:
stored
patterns

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 24

Hopfield Network: Training

• We want to construct a network with desired stable local optimum
• A pattern can be recovered after 1-bit change

• For a specific set of 𝐾𝐾 patterns, we can always build a network for
which all patterns are stable provided 𝐾𝐾 ≤ 𝑁𝑁

• Mostafa and St. Jacques (1985)
• For large 𝑁𝑁, the upper bound on 𝐾𝐾 is actually 𝑁𝑁

4
log𝑁𝑁

• McElice et. al. (1987)
• Still possible with undesired local minimum

• How can we find the weights?
• 𝐾𝐾 patterns to be stored
• Avoid undesired local minimum as much as we can

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 25

Hopfield Network: Optimization

• Problem Formulation
• Desired patterns 𝑃𝑃 = 𝑦𝑦𝑝𝑝

• Energy function 𝐸𝐸(𝑦𝑦) = −1
2
𝑦𝑦𝑇𝑇𝑊𝑊𝑊𝑊 (we omit bias term for simplicity)

• Objective for 𝑊𝑊
• Minimize 𝐸𝐸 for all 𝑦𝑦𝑝𝑝
• It should also maximize 𝐸𝐸 for all non-desired patterns!

𝑊𝑊 = arg min
𝑊𝑊

�
𝑦𝑦∈𝑃𝑃

𝐸𝐸 𝑦𝑦 − �
𝑦𝑦′∉𝑃𝑃

𝐸𝐸(𝑦𝑦𝑦)

• Gradient Descent

𝑊𝑊 ← 𝑊𝑊 − 𝜂𝜂 �
𝑦𝑦∈𝑃𝑃

𝑦𝑦𝑦𝑦𝑇𝑇 − �
𝑦𝑦𝑦∉𝑃𝑃

𝑦𝑦𝑦𝑦𝑦′𝑇𝑇De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 26

Hopfield Network: Optimization

• Update rule for 𝑊𝑊
𝑊𝑊 ←𝑊𝑊 − 𝜂𝜂 �

𝑦𝑦∈𝑃𝑃

𝑦𝑦𝑦𝑦𝑇𝑇 − �
𝑦𝑦𝑦∉𝑃𝑃

𝑦𝑦𝑦𝑦𝑦′𝑇𝑇

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 27

Hopfield Network: Optimization

• Update rule for 𝑊𝑊
𝑊𝑊 ←𝑊𝑊 − 𝜂𝜂 �

𝑦𝑦∈𝑃𝑃

𝑦𝑦𝑦𝑦𝑇𝑇 − �
𝑦𝑦𝑦∉𝑃𝑃

𝑦𝑦𝑦𝑦𝑦′𝑇𝑇

• The first term is minimizing the energy of desired patterns!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 28

Hopfield Network: Optimization

• Update rule for 𝑊𝑊
𝑊𝑊 ←𝑊𝑊 − 𝜂𝜂 �

𝑦𝑦∈𝑃𝑃

𝑦𝑦𝑦𝑦𝑇𝑇 − �
𝑦𝑦𝑦∉𝑃𝑃

𝑦𝑦𝑦𝑦𝑦′𝑇𝑇

• The second term essentially raises all the patterns in the space
• Issue??

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 29

Hopfield Network: Optimization

• Update rule for 𝑊𝑊
𝑊𝑊 ←𝑊𝑊 − 𝜂𝜂 �

𝑦𝑦∈𝑃𝑃

𝑦𝑦𝑦𝑦𝑇𝑇 − �
𝑦𝑦′∉𝑃𝑃 & 𝒚𝒚′∈𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽

𝑦𝑦𝑦𝑦𝑦′𝑇𝑇

• Let’s just focus on the valleys!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 30

Hopfield Network: Optimization

• Update rule for 𝑊𝑊
𝑊𝑊 ←𝑊𝑊 − 𝜂𝜂 �

𝑦𝑦∈𝑃𝑃

𝑦𝑦𝑦𝑦𝑇𝑇 − �
𝑦𝑦′∉𝑃𝑃 & 𝒚𝒚′∈𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽

𝑦𝑦𝑦𝑦𝑦′𝑇𝑇

• Let’s just focus on the valleys!
• But how can we find the valleys?

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 31

Hopfield Network: Optimization

• Update rule for 𝑊𝑊
𝑊𝑊 ←𝑊𝑊 − 𝜂𝜂 �

𝑦𝑦∈𝑃𝑃

𝑦𝑦𝑦𝑦𝑇𝑇 − �
𝑦𝑦′∉𝑃𝑃 & 𝒚𝒚′∈𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽

𝑦𝑦𝑦𝑦𝑦′𝑇𝑇

• Let’s just focus on the valleys!
• But how can we find the valleys?
• Evolution of Hopfield Network will converge to a valley

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 32

Hopfield Network: Optimization

• Update rule for 𝑊𝑊
𝑊𝑊 ←𝑊𝑊 − 𝜂𝜂 �

𝑦𝑦∈𝑃𝑃

𝑦𝑦𝑦𝑦𝑇𝑇 − �
𝑦𝑦′∉𝑃𝑃 & 𝒚𝒚′∈𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽

𝑦𝑦𝑦𝑦𝑦′𝑇𝑇

• Compute outer-products of desired patterns 𝑦𝑦
• Randomly initialize 𝑦𝑦𝑦 for multiple times

• Run evolution for random 𝑦𝑦𝑦 until convergence
• Calculate outer-product of 𝑦𝑦𝑦

• Compute gradient and update 𝑊𝑊

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 33

Hopfield Network: Optimization

• Update rule for 𝑊𝑊
𝑊𝑊 ←𝑊𝑊 − 𝜂𝜂 �

𝑦𝑦∈𝑃𝑃

𝑦𝑦𝑦𝑦𝑇𝑇 − �
𝑦𝑦′∉𝑃𝑃 & 𝒚𝒚′∈𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽

𝑦𝑦𝑦𝑦𝑦′𝑇𝑇

• Compute outer-products of desired patterns 𝑦𝑦
• Randomly initialize 𝑦𝑦𝑦 for multiple times

• Run evolution for random 𝑦𝑦𝑦 until convergence
• Calculate outer-product of 𝑦𝑦𝑦

• Compute gradient and update 𝑊𝑊

• Valleys are NOT equivalently important…De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 34

Hopfield Network: Optimization

• Which valleys are important?

• Primary object: ensure desired pattens stable
• We want to ensure desired patterns are in broad valleys

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 35

Hopfield Network: Optimization

• Which valleys are important?

• Primary object: ensure desired pattens stable
• We want to ensure desired patterns are in broad valleys
• Spurious valleys around desired patterns are more important to eliminate

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 36

Hopfield Network: Optimization

• Which valleys are important?

• Primary object: ensure desired pattens stable
• We want to ensure desired patterns are in broad valleys
• Spurious valleys around desired patterns are more important to eliminate
• Evolution from desired patterns

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 37

Hopfield Network: Optimization

• Update rule for 𝑊𝑊
𝑊𝑊 ←𝑊𝑊 − 𝜂𝜂 �

𝑦𝑦∈𝑃𝑃

𝑦𝑦𝑦𝑦𝑇𝑇 − �
𝑦𝑦′∉𝑃𝑃 & 𝒚𝒚′∈𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽

𝑦𝑦𝑦𝑦𝑦′𝑇𝑇

• Compute outer-products of desired patterns 𝑦𝑦
• Initialize 𝑦𝑦𝑦 by all the desired patterns

• Run evolution for random 𝑦𝑦𝑦 until convergence
• Calculate outer-product of 𝑦𝑦𝑦

• Compute gradient and update 𝑊𝑊

• Still issues?D
ee
p
Le
ar
ni
ng
,
Sp
ri
ng
 2
02
5

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 38

Hopfield Network: Optimization

• Recap: we raise the valleys next to the desired patterns

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 39

Hopfield Network: Optimization

• Recap: we raise the valleys next to the desired patterns

• What if a pattern is close to the valley?
• Naively forcing a valley to raise may hurt the learned representation
• Particularly challenging when 𝑦𝑦 are continuously valued (e.g., tanh activation)

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 40

Hopfield Network: Optimization

• New idea: we only raise the “neighborhood” of desired patterns!
• It is sufficient to make each desired pattern a valley
• Note: we want to raise the neighborhood of the decent direction

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 41

Hopfield Network: Optimization

• New idea: we only raise the “neighborhood” of desired patterns!
• It is sufficient to make each desired pattern a valley
• Note: we want to raise the neighborhood of the decent direction

• Implementation
• We initialize 𝑦𝑦𝑦 by the desired patterns
• Only perform evolution for a few steps!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 42

Hopfield Network: SGD Optimization

• SGD update rule for 𝑊𝑊
𝑊𝑊 ←𝑊𝑊 − 𝜂𝜂 E𝑦𝑦∈𝑃𝑃 𝑦𝑦𝑦𝑦𝑇𝑇 − E𝑦𝑦′ 𝑦𝑦𝑦𝑦𝑦′𝑇𝑇

• Compute outer-products of random desired pattern 𝑦𝑦
• Initialize 𝑦𝑦𝑦 by a random desired pattern

• Run evolution for random 𝑦𝑦𝑦 for a few timesteps (2~4)
• Calculate outer-product of 𝑦𝑦𝑦

• Compute gradient and update 𝑊𝑊
• In theory, 𝑂𝑂 𝑁𝑁 patterns can be stored in the network (with

undesired valleys)
• How to store more patterns?De

ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 43

The Expanded Network

• Idea: introduce redundant neurons to increase network capacity
• Original 𝑁𝑁 neurons for patterns: visible neurons
• Additional 𝐾𝐾 neurons: hidden neurons

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 44

The Expanded Network

• Idea: introduce redundant neurons to increase network capacity
• Original 𝑁𝑁 neurons for patterns: visible neurons
• Additional 𝐾𝐾 neurons: hidden neurons

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 45

The Expanded Network

• 𝑁𝑁 dimensional pattern  𝑁𝑁 + 𝐾𝐾 dimension
• Q1: How can we store the patterns with 𝐾𝐾 additional units? (random filling?)
• Q2: How to retrieve the desired patterns? (perform evolution?)

We will have an elegant solution by converting a
Hopfield network to a probabilistic model 𝑃𝑃(𝑣𝑣,ℎ)!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 46

Today’s Lecture: Energy-Based Models

• A particularly flexible and general form of generative model

• Part 1: Hopfield Network
• The simplest model that can memorize and generate patterns

• Part 2: Boltzmann Machine
• The first deep generative model

• Part 3: General Energy-Based Models & Sampling MethodsDe
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 47

The Helmholtz Free Energy

• Recap: A thermodynamic （热力学） system
• A probabilistic system
• Hopfield network is a simplified deterministic version

• A thermodynamic system at temperature 𝑇𝑇
• 𝑃𝑃𝑇𝑇(𝑆𝑆) the probability of the system at state 𝑆𝑆
• 𝐸𝐸𝑇𝑇(𝑆𝑆) the potential energy at state 𝑆𝑆
• 𝑈𝑈𝑇𝑇 the internal energy, the capability to do work
• 𝐻𝐻𝑇𝑇 the entropy, internal disorder of the system
• 𝑘𝑘 Boltzmann constant
• Free energy 𝐹𝐹𝑇𝑇 = 𝑈𝑈𝑇𝑇 − 𝑘𝑘𝑘𝑘𝐻𝐻𝑇𝑇De

ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 48

The Helmholtz Free Energy

• Free energy

𝐹𝐹𝑇𝑇 = �
𝑆𝑆

𝑃𝑃𝑇𝑇 𝑆𝑆 𝐸𝐸𝑇𝑇(𝑆𝑆) + 𝑘𝑘𝑘𝑘�
𝑆𝑆

𝑃𝑃𝑇𝑇 𝑆𝑆 log𝑃𝑃𝑇𝑇(𝑆𝑆)

• Boltzmann distribution (also known as Gibbs distribution)

𝑃𝑃𝑇𝑇 𝑆𝑆 =
1
𝑍𝑍

exp −
𝐸𝐸𝑇𝑇(𝑆𝑆)
𝑘𝑘𝑘𝑘

• Minimum Free-Energy Principle: minimize 𝐹𝐹𝑇𝑇 w.r.t. 𝑃𝑃𝑇𝑇(𝑆𝑆)
• The probability distribution of states at equilibrium
• 𝑍𝑍 normalizing constant

Given an energy function 𝐸𝐸𝑇𝑇 𝑆𝑆 , if we follow a proper physical evolution process,
the system state will converge to the Boltzmann distribution

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 49

Stochastic Hopfield Network

• Let’s model our Hopfield network as a thermodynamic system
• 𝑇𝑇 = 𝑘𝑘 = 1 for simplicity
• Energy

𝐸𝐸 𝑦𝑦 = −�
𝑖𝑖<𝑗𝑗

𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 − 𝑏𝑏𝑖𝑖𝑦𝑦𝑖𝑖

• Boltzmann Probability

𝑃𝑃 𝑦𝑦 =
1
𝑍𝑍

exp(−𝐸𝐸(𝑦𝑦)) =
1
𝑍𝑍

exp �
𝑖𝑖<𝑗𝑗

𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 + 𝑏𝑏𝑖𝑖𝑦𝑦𝑖𝑖

• Stochastic Hopfield Network
• 𝑃𝑃(𝑦𝑦) models the stationary probability distribution of states 𝑦𝑦 given 𝐸𝐸(𝑦𝑦)
• We generate patterns by sampling from 𝑃𝑃(𝑦𝑦)

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 50

Stochastic Hopfield Network

• Let’s consider the “flip” operation
• Deterministic  probabilistic
• Goal: change 𝑦𝑦𝑖𝑖 to 1 with probability 𝑃𝑃(𝑦𝑦𝑖𝑖 = 1|𝑦𝑦𝑗𝑗≠𝑖𝑖)

• Assume 𝑦𝑦 and 𝑦𝑦𝑦 only differ at position 𝑖𝑖 and 𝑦𝑦𝑖𝑖′ = −1
• log𝑃𝑃 𝑦𝑦 = −𝐸𝐸 𝑦𝑦 + 𝐶𝐶
• 𝐸𝐸 𝑦𝑦 = −∑𝑖𝑖<𝑗𝑗 𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 − 𝑏𝑏𝑖𝑖𝑦𝑦𝑖𝑖
• log𝑃𝑃 𝑦𝑦 − log𝑃𝑃 𝑦𝑦′ = 𝐸𝐸 𝑦𝑦′ − 𝐸𝐸 𝑦𝑦 = −∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗 − 2𝑏𝑏𝑖𝑖

log
𝑃𝑃 𝑦𝑦
𝑃𝑃(𝑦𝑦𝑦)

= log
𝑃𝑃 𝑦𝑦𝑖𝑖 = 1|𝑦𝑦𝑗𝑗≠𝑖𝑖 𝑃𝑃 𝑦𝑦𝑗𝑗≠𝑖𝑖
𝑃𝑃 𝑦𝑦𝑖𝑖′ = −1 𝑦𝑦𝑗𝑗≠𝑖𝑖′ 𝑃𝑃 𝑦𝑦𝑗𝑗≠𝑖𝑖′ = log

𝑃𝑃 𝑦𝑦𝑖𝑖 = 1|𝑦𝑦𝑗𝑗≠𝑖𝑖
1 − 𝑃𝑃 𝑦𝑦𝑖𝑖 = 1|𝑦𝑦𝑗𝑗≠𝑖𝑖

= −�
𝑗𝑗

𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗 − 2𝑏𝑏𝑖𝑖

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 51

Stochastic Hopfield Network

• Let’s consider the “flip” operation
• Deterministic  probabilistic
• Goal: change 𝑦𝑦𝑖𝑖 to 1 with probability 𝑃𝑃(𝑦𝑦𝑖𝑖 = 1|𝑦𝑦𝑗𝑗≠𝑖𝑖)

• Assume 𝑦𝑦 and 𝑦𝑦𝑦 only differ at position 𝑖𝑖 and 𝑦𝑦𝑖𝑖′ = −1
• log𝑃𝑃 𝑦𝑦 = −𝐸𝐸 𝑦𝑦 + 𝐶𝐶
• 𝐸𝐸 𝑦𝑦 = −∑𝑖𝑖<𝑗𝑗 𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 − 𝑏𝑏𝑖𝑖𝑦𝑦𝑖𝑖
• log𝑃𝑃 𝑦𝑦 − log𝑃𝑃 𝑦𝑦′ = 𝐸𝐸 𝑦𝑦′ − 𝐸𝐸 𝑦𝑦 = −∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗 − 2𝑏𝑏𝑖𝑖

log
𝑃𝑃 𝑦𝑦
𝑃𝑃(𝑦𝑦𝑦)

= log
𝑃𝑃 𝑦𝑦𝑖𝑖 = 1|𝑦𝑦𝑗𝑗≠𝑖𝑖 𝑃𝑃 𝑦𝑦𝑗𝑗≠𝑖𝑖
𝑃𝑃 𝑦𝑦𝑖𝑖′ = −1 𝑦𝑦𝑗𝑗≠𝑖𝑖′ 𝑃𝑃 𝑦𝑦𝑗𝑗≠𝑖𝑖′ = log

𝑃𝑃 𝑦𝑦𝑖𝑖 = 1|𝑦𝑦𝑗𝑗≠𝑖𝑖
1 − 𝑃𝑃 𝑦𝑦𝑖𝑖 = 1|𝑦𝑦𝑗𝑗≠𝑖𝑖

= −�
𝑗𝑗

𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗 − 2𝑏𝑏𝑖𝑖

• A sigmoid conditional: 𝑃𝑃 𝑦𝑦𝑖𝑖 = 1 𝑦𝑦𝑗𝑗≠𝑖𝑖 = 1
1+exp − ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗−2𝑏𝑏𝑖𝑖

This is also called Gibbs sampling (remember the name for now )

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 52

Stochastic Hopfield Network

• The whole update rule
• Field at 𝑦𝑦𝑖𝑖: 𝑧𝑧𝑖𝑖 = ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗 + 2𝑏𝑏𝑖𝑖
• 𝑃𝑃 𝑦𝑦𝑖𝑖 = 1 𝑦𝑦𝑗𝑗≠𝑖𝑖 = 1

1+exp(−𝑧𝑧𝑖𝑖)
= 𝜎𝜎(𝑧𝑧𝑖𝑖)

• Evolving the network
• Randomly initialize 𝑦𝑦
• Cycle over 𝑦𝑦𝑖𝑖, fixed other variables fixed and sample 𝑦𝑦𝑖𝑖 according to the

conditional probability
• After “convergence”, we can get samples of 𝑦𝑦 according to 𝑃𝑃(𝑦𝑦)
• This sampling procedure is called Gibbs sampling
• How can we retrieve a stored pattern???

• This is a stochastic process!

Field quantifies the
delta energy of flip

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 53

Stochastic Hopfield Network

• Network evolution
• initialize 𝑦𝑦0
• For 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 𝑦𝑦𝑖𝑖 𝑡𝑡 + 1 ~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜎𝜎(𝑧𝑧𝑖𝑖(𝑡𝑡)))
• Until convergence

• Retrieve a stored (low energy / high probability) pattern 𝑦𝑦
• Given sequence of samples 𝑦𝑦0, … ,𝑦𝑦𝐿𝐿
• Simply take the average of final 𝑀𝑀 samples

𝑦𝑦𝑖𝑖 = 𝐼𝐼
1
𝑀𝑀

�
𝑡𝑡=𝐿𝐿−𝑀𝑀+1

𝐿𝐿

𝑦𝑦𝑖𝑖(𝑡𝑡) > 0

• If you want a probability instead of a single vector, you can use the frequency derived
from {𝑦𝑦𝐿𝐿−𝑀𝑀+1, … ,𝑦𝑦𝐿𝐿} to approximate the stationary distribution

• In many applications, we simply take 𝑴𝑴 = 𝟏𝟏 (output 𝒚𝒚𝑳𝑳)

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 54

Stochastic Hopfield Network: Annealing

• Find the state with lowest energy?
• Network evolution with temperature annealing

• initialize 𝑦𝑦0,𝑇𝑇 ← 𝑇𝑇max
• Repeat

• Repeat a few cycles

• For 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 𝑦𝑦𝑖𝑖 𝑇𝑇 ~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝜎𝜎 1
𝑇𝑇
𝑧𝑧𝑖𝑖 𝑇𝑇

• 𝑦𝑦𝑖𝑖 𝛼𝛼𝛼𝛼 ← 𝑦𝑦𝑖𝑖 𝑇𝑇 ;𝑇𝑇 ← 𝛼𝛼 𝑇𝑇
• Until convergence

• Final state as the retrieved pattern
• With temperature annealing, the system will converge to the most likely state
• Possibly local minimum in practice

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 55

Boltzmann Machine

• A generative Model (simplified)
• 𝐸𝐸 𝑦𝑦 = −1

2
𝑦𝑦𝑇𝑇𝑊𝑊𝑊𝑊

• 𝑃𝑃 𝑦𝑦 = 1
𝑍𝑍

exp −𝐸𝐸 𝑦𝑦
𝑇𝑇

• Parameter 𝑊𝑊
• It has a probability for producing any binary pattern 𝑦𝑦

• We assume 𝑦𝑦𝑖𝑖 = 0 or 1 (or ±1)

How to learn 𝑾𝑾 for desired patterns?

𝒛𝒛𝒊𝒊 =
𝟏𝟏
𝑻𝑻
�
𝒋𝒋

𝒘𝒘𝒋𝒋,𝒊𝒊𝒚𝒚𝒋𝒋

𝑷𝑷 𝒚𝒚𝒊𝒊 = 𝟏𝟏 𝒚𝒚𝒋𝒋≠𝒊𝒊 =
𝟏𝟏

𝟏𝟏 + 𝒆𝒆−𝒛𝒛𝒊𝒊

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 56

Boltzmann Machine: Training

• Goal
• Remember a set of desired patterns 𝑃𝑃 = {𝑦𝑦𝑝𝑝}
• Now we have a probability distribution 𝑃𝑃(𝑦𝑦) with parameter 𝑊𝑊

• Objective: maximum likelihood learning (assume 𝑇𝑇 = 1)
• Probability of a particular pattern

𝑃𝑃 𝑦𝑦 =
exp 1

2𝑦𝑦
𝑇𝑇𝑊𝑊𝑊𝑊

∑𝑦𝑦′ exp 1
2𝑦𝑦

′𝑇𝑇𝑊𝑊𝑊𝑊𝑊
• Maximize log-likelihood

𝐿𝐿 𝑊𝑊 =
1
𝑁𝑁𝑃𝑃

�
𝑦𝑦∈𝑃𝑃

1
2
𝑦𝑦𝑇𝑇𝑊𝑊𝑊𝑊 − log�

𝑦𝑦𝑦

exp
1
2
𝑦𝑦′𝑇𝑇𝑊𝑊𝑦𝑦′De

ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 57

Boltzmann Machine: Training

• Maximize log-likelihood
𝐿𝐿 𝑊𝑊 =

1
𝑁𝑁𝑃𝑃

�
𝑦𝑦∈𝑃𝑃

1
2
𝑦𝑦𝑇𝑇𝑊𝑊𝑊𝑊 − log�

𝑦𝑦𝑦

exp
1
2
𝑦𝑦′𝑇𝑇𝑊𝑊𝑦𝑦′

• Gradient Ascent 𝛻𝛻𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 58

Boltzmann Machine: Training

• Maximize log-likelihood
𝐿𝐿 𝑊𝑊 =

1
𝑁𝑁𝑃𝑃

�
𝑦𝑦∈𝑃𝑃

1
2
𝑦𝑦𝑇𝑇𝑊𝑊𝑊𝑊 − log�

𝑦𝑦𝑦

exp
1
2
𝑦𝑦′𝑇𝑇𝑊𝑊𝑦𝑦′

• Gradient Ascent 𝛻𝛻𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿
• 𝛻𝛻𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 = 1

𝑁𝑁𝑃𝑃
∑𝑦𝑦∈𝑃𝑃 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 59

Boltzmann Machine: Training

• Maximize log-likelihood
𝐿𝐿 𝑊𝑊 =

1
𝑁𝑁𝑃𝑃

�
𝑦𝑦∈𝑃𝑃

1
2
𝑦𝑦𝑇𝑇𝑊𝑊𝑊𝑊 − log�

𝑦𝑦𝑦

exp
1
2
𝑦𝑦′𝑇𝑇𝑊𝑊𝑦𝑦′

• Gradient Ascent 𝛻𝛻𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿

• 𝛻𝛻𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 = 1
𝑁𝑁𝑃𝑃
∑𝑦𝑦∈𝑃𝑃 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 − ∑𝑦𝑦𝑦

exp 1
2𝑦𝑦

′𝑇𝑇𝑊𝑊𝑦𝑦′

𝑍𝑍
⋅ 𝑦𝑦𝑖𝑖′𝑦𝑦𝑗𝑗′ Exponentially many terms!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 60

Boltzmann Machine: Training

• Maximize log-likelihood
𝐿𝐿 𝑊𝑊 =

1
𝑁𝑁𝑃𝑃

�
𝑦𝑦∈𝑃𝑃

1
2
𝑦𝑦𝑇𝑇𝑊𝑊𝑊𝑊 − log�

𝑦𝑦𝑦

exp
1
2
𝑦𝑦′𝑇𝑇𝑊𝑊𝑦𝑦′

• Gradient Ascent 𝛻𝛻𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿

• 𝛻𝛻𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 = 1
𝑁𝑁𝑃𝑃
∑𝑦𝑦∈𝑃𝑃 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 − ∑𝑦𝑦𝑦

exp 1
2𝑦𝑦

′𝑇𝑇𝑊𝑊𝑦𝑦′

𝑍𝑍
⋅ 𝑦𝑦𝑖𝑖′𝑦𝑦𝑗𝑗′

• 𝛻𝛻𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 = 1
𝑁𝑁𝑃𝑃
∑𝑦𝑦∈𝑃𝑃 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 − E𝑦𝑦′ 𝑦𝑦𝑖𝑖′𝑦𝑦𝑗𝑗′

• Draw a set of samples 𝑆𝑆 for 𝑦𝑦𝑦 according to the probability,
• 𝛻𝛻𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 = 1

𝑁𝑁𝑃𝑃
∑𝑦𝑦∈𝑃𝑃 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 −

1
|𝑆𝑆|
∑𝑦𝑦𝑦∈𝑆𝑆 𝑦𝑦𝑖𝑖′𝑦𝑦𝑗𝑗′

Monte-Carlo Approximation

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 61

Boltzmann Machine: Training

• Maximize log-likelihood with 𝑀𝑀 Monte-Carlo samples
∇𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 𝑊𝑊 =

1
𝑁𝑁𝑃𝑃

�
𝑦𝑦∈𝑃𝑃

𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 −
1
𝑀𝑀
�
𝑦𝑦𝑦∈𝑆𝑆

𝑦𝑦𝑖𝑖′𝑦𝑦𝑗𝑗′

• How to draw samples from 𝑃𝑃(𝑦𝑦)?
• Running the stochastic network (Gibbs sampling)

• Randomly initialize 𝑦𝑦(0)
• Cycle over 𝑦𝑦𝑖𝑖(𝑡𝑡), sampling according to 𝑃𝑃(𝑦𝑦𝑖𝑖 𝑡𝑡 |𝑦𝑦𝑗𝑗≠𝑖𝑖(𝑡𝑡))
• After convergence, we get a sequence of samples {𝑦𝑦 0 , … ,𝑦𝑦(𝐿𝐿)}
• Get the final 𝑀𝑀 states as samples 𝑆𝑆 = {𝑦𝑦 𝐿𝐿 −𝑀𝑀 + 1 , … ,𝑦𝑦(𝐿𝐿)}
De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 62

Boltzmann Machine: Training

• Overall Training
• Initialize 𝑊𝑊
• Maximize log-likelihood with 𝑀𝑀 Monte-Carlo samples

∇𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 𝑊𝑊 =
1
𝑁𝑁𝑃𝑃

�
𝑦𝑦∈𝑃𝑃

𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 −
1
𝑀𝑀
�
𝑦𝑦𝑦∈𝑆𝑆

𝑦𝑦𝑖𝑖′𝑦𝑦𝑗𝑗′

• 𝑤𝑤𝑖𝑖𝑖𝑖 ← 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝜂𝜂∇𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 𝑊𝑊 (we are maximizing likelihood)

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 63

Boltzmann Machine with Hidden Neurons

• Let’s get back to hidden neurons!
• 𝑣𝑣 visible neurons (visible patterns), ℎ hidden neurons (latent variables)
• 𝑦𝑦 = (𝑣𝑣,ℎ)

• A joint probability distribution
• 𝑃𝑃 𝑦𝑦 = 𝑃𝑃(𝑣𝑣,ℎ)
• 𝑃𝑃 𝑣𝑣 = ∑ℎ 𝑃𝑃(𝑣𝑣,ℎ)

• We only care about patterns
• The marginal distribution!

• New objective
• Maximize the marginal probabilityDe

ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 64

Boltzmann Machine with Hidden Neurons

• Maximum log-likelihood learning

𝑃𝑃 𝑣𝑣 = �
ℎ

𝑃𝑃(𝑣𝑣,ℎ) = �
ℎ

exp 𝑦𝑦𝑇𝑇𝑊𝑊𝑊𝑊
∑𝑦𝑦𝑦 exp(𝑦𝑦′𝑇𝑇𝑊𝑊𝑊𝑊𝑊)

𝐿𝐿 𝑊𝑊 =
1

|𝑃𝑃|
�
𝑣𝑣∈𝑃𝑃

log �
ℎ

exp 𝑦𝑦𝑇𝑇𝑊𝑊𝑊𝑊 − log �
𝑦𝑦𝑦

exp(𝑦𝑦′𝑇𝑇𝑊𝑊𝑊𝑊𝑊)

• Gradient ∇𝐿𝐿(𝑊𝑊)?

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 65

Boltzmann Machine with Hidden Neurons

• Maximum log-likelihood learning

𝑃𝑃 𝑣𝑣 = �
ℎ

𝑃𝑃(𝑣𝑣,ℎ) = �
ℎ

exp 𝑦𝑦𝑇𝑇𝑊𝑊𝑊𝑊
∑𝑦𝑦𝑦 exp(𝑦𝑦′𝑇𝑇𝑊𝑊𝑊𝑊𝑊)

𝐿𝐿 𝑊𝑊 =
1

|𝑃𝑃|
�
𝑣𝑣∈𝑃𝑃

log �
ℎ

exp 𝑦𝑦𝑇𝑇𝑊𝑊𝑊𝑊 − log �
𝑦𝑦𝑦

exp(𝑦𝑦′𝑇𝑇𝑊𝑊𝑊𝑊𝑊)

• Gradient ∇𝐿𝐿(𝑊𝑊)?
Monte-Carlo Estimate!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 66

Boltzmann Machine with Hidden Neurons

• Maximum log-likelihood learning

𝑃𝑃 𝑣𝑣 = �
ℎ

𝑃𝑃(𝑣𝑣,ℎ) = �
ℎ

exp 𝑦𝑦𝑇𝑇𝑊𝑊𝑊𝑊
∑𝑦𝑦𝑦 exp(𝑦𝑦′𝑇𝑇𝑊𝑊𝑊𝑊𝑊)

𝐿𝐿 𝑊𝑊 =
1

|𝑃𝑃|
�
𝑣𝑣∈𝑃𝑃

log �
ℎ

exp 𝑦𝑦𝑇𝑇𝑊𝑊𝑊𝑊 − log �
𝑦𝑦𝑦

exp(𝑦𝑦′𝑇𝑇𝑊𝑊𝑊𝑊𝑊)

• Gradient ∇𝐿𝐿(𝑊𝑊)?
• The first term is also in the form of log-sum
• Monte Carlo estimates for each 𝑣𝑣 ∈ 𝑃𝑃!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 67

Boltzmann Machine with Hidden Neurons

• Maximum log-likelihood learning

∇𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 𝑊𝑊 =
1

|𝑃𝑃|
�
𝑣𝑣∈𝑃𝑃

𝐸𝐸ℎ 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 − 𝐸𝐸𝑦𝑦′ 𝑦𝑦𝑖𝑖′𝑦𝑦𝑗𝑗′

• Second term
• Freely generate samples w.r.t. 𝑝𝑝(𝑦𝑦)
• Random initialization, cyclic Gibbs sampling

• First term
• Generate samples w.r.t. 𝑝𝑝(𝑦𝑦) conditioned on a fixed 𝑣𝑣
• Randomly initialize ℎ, run Gibbs sampling over ℎDe

ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 68

Boltzmann Machine with Hidden Neurons

• Overall Training
• Initialize 𝑊𝑊
• For 𝑣𝑣 ∈ 𝑃𝑃, fixed the visible neurons, run Gibbs sampling to get 𝐾𝐾 samples

• Collect all conditioned samples as 𝑆𝑆𝑐𝑐
• Randomly initialize all neurons, run Gibbs sampling to get 𝑀𝑀 samples

• Collect free samples as 𝑆𝑆
• Maximize log-likelihood with 𝑁𝑁𝑝𝑝𝐾𝐾 + 𝑀𝑀 Monte-Carlo samples

∇𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 𝑊𝑊 =
1

𝑁𝑁𝑃𝑃𝐾𝐾
�
𝑦𝑦∈𝑆𝑆𝑐𝑐

𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 −
1
𝑀𝑀
�
𝑦𝑦𝑦∈𝑆𝑆

𝑦𝑦𝑖𝑖′𝑦𝑦𝑗𝑗′

• 𝑤𝑤𝑖𝑖𝑖𝑖 ← 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝜂𝜂∇𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 𝑊𝑊 De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 69

Boltzmann Machine

• Summary
• A stochastic version of Hopfield Network

• Nice mathematical properties
• Large capacity for storing patterns (with hidden neurons)

• Pattern generation
• Gibbs sampling

• Pattern completion
• Conditioned Gibbs sampling

• Classification??
• 𝑦𝑦 = (𝑣𝑣, ℎ, 𝑐𝑐), 𝑐𝑐 is label
• c as a one-hot vector (0-1 variables)
• Posterior 𝑃𝑃(𝑐𝑐|𝑣𝑣)
• Even conditional generation: 𝑃𝑃(𝑣𝑣|𝑐𝑐)!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 70

Boltzmann Machine

• The issue
• Training is hard!
• Gibbs sampling may take a very long time to converge

• also called mixing-time
• Not really applicable for large problems

• Can we design a better structure for faster Gibbs sampling mixing?

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 71

Restricted Boltzmann Machine

• A particularly structured Boltzmann Machine
• A partitioned structure
• Hidden neurons are only connected to visible neurons
• No intra-layer connections
• Invented under the name Harmonium by Paul Smolensky in 1986
• Became promise after Hinton invented fast learning algorithms in mid-2000

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 72

Restricted Boltzmann Machine

• Computation Rules: same as Boltzmann machine
• Hidden neurons ℎ𝑖𝑖

𝑧𝑧𝑖𝑖 = �
𝑗𝑗

𝑤𝑤𝑖𝑖𝑖𝑖𝑣𝑣𝑗𝑗 , 𝑃𝑃 ℎ𝑖𝑖 = 1 𝑣𝑣𝑗𝑗 =
1

1 + exp(−𝑧𝑧𝑖𝑖)

• Visible neurons 𝑣𝑣𝑗𝑗
𝑧𝑧𝑗𝑗 = �

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖ℎ𝑖𝑖 , 𝑃𝑃 𝑣𝑣𝑗𝑗 = 1 ℎ𝑖𝑖 =
1

1 + exp(−𝑧𝑧𝑗𝑗)

Iterative Sampling!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 73

Restricted Boltzmann Machine

• Sampling
• Randomly initialize visible neurons 𝑣𝑣0
• Iterative between hidden and visible neurons
• Get final sample (𝑣𝑣∞,ℎ∞)

• Conditioned sampling?
• Initialize 𝑣𝑣0 as the desired pattern
• Sample ℎ0 (the conditional distribution is exact!)

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 74

Restricted Boltzmann Machine

• Maximum Likelihood Estimate

∇𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 𝑊𝑊 =
1

𝑁𝑁𝑃𝑃𝐾𝐾
�
𝑣𝑣∈𝑃𝑃

𝑣𝑣0𝑖𝑖ℎ0𝑗𝑗 −
1
𝑀𝑀
�𝑣𝑣∞𝑖𝑖ℎ∞𝑗𝑗

• No need to lift up the entire energy landscape … (recap)

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 75

Restricted Boltzmann Machine

• Maximum Likelihood Estimate

∇𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 𝑊𝑊 =
1

𝑁𝑁𝑃𝑃𝐾𝐾
�
𝑣𝑣∈𝑃𝑃

𝑣𝑣0𝑖𝑖ℎ0𝑗𝑗 −
1
𝑀𝑀
�𝑣𝑣∞𝑖𝑖ℎ∞𝑗𝑗

• We can starting sampling with a given 𝑣𝑣0
• Raising the neighborhood of the desired patterns will be sufficient

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 76

Restricted Boltzmann Machine

• Maximum Likelihood Estimate

∇𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 𝑊𝑊 =
1

𝑁𝑁𝑃𝑃𝐾𝐾
�
𝑣𝑣∈𝑃𝑃

𝑣𝑣0𝑖𝑖ℎ0𝑗𝑗 −
1
𝑀𝑀
�𝑣𝑣∞𝑖𝑖ℎ∞𝑗𝑗

• Directly run Gibbs sampling from 𝑣𝑣0 for 3 steps will be sufficient!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 77

Restricted Boltzmann Machine

• Maximum Likelihood Estimate

∇𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 𝑊𝑊 =
1
𝑁𝑁𝑃𝑃

�
𝑣𝑣∈𝑃𝑃

𝑣𝑣0𝑖𝑖ℎ0𝑗𝑗 − 𝑣𝑣1𝑖𝑖ℎ1𝑗𝑗

• Only 3 Gibbs sampling steps are needed!

• We can also extend (R)BMs to to continuous values!
• If we can explicitly sample from 𝑃𝑃(𝑦𝑦𝑖𝑖|𝑦𝑦𝑗𝑗≠𝑖𝑖)
• Exponential family! (FYI )

• “Exponential Family Harmoniums with an Application
 to Information Retrieval”, Welling et al., 2004De

ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 78

Deep Boltzmann Machine

• Can we have a deep version of RBM?
• Deep Belief Net (2006)
• Deep Boltzmann Machine (2009)

• Sampling?
• Forward pass: bottom-up
• Backward pass: top-down
• Practical Trick: Layer-by-layer pretraining

• “Deep Boltzmann Machine”, AISTATS 2009
• The very first deep generative model
• Ruslan Salakhutdinov & Geoffrey Hinton

deep belief net Deep Boltzmann MachineDe
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 79

Deep Boltzmann Machine

• Can we have a deep version of RBM?
• Deep Belief Net (2006)
• Deep Boltzmann Machine (2009)

• Sampling?
• Forward pass: bottom-up
• Backward pass: top-down
• Practical Trick: Layer-by-layer pretraining

• “Deep Boltzmann Machine”, AISTATS 2009
• The very first deep generative model
• Ruslan Salakhutdinov & Geoffrey Hinton

deep belief net Deep Boltzmann MachineDe
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 80

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 81

Today’s Lecture: Energy-Based Models

• A particularly flexible and general form of generative model

• Part 1: Hopfield Network
• The simplest model that can memorize and generate patterns

• Part 2: Boltzmann Machine
• The first deep generative model

• Part 3: General Energy-Based Models & Sampling MethodsDe
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 82

Energy-Based Model

• Goal of generative model
• A probability distribution of “patterns” 𝑃𝑃(𝑥𝑥)

• Requirement
• 𝑃𝑃 𝑥𝑥 ≥ 0 (non-negative)
• ∫𝑥𝑥 𝑃𝑃 𝑥𝑥 𝑑𝑑𝑑𝑑 = 1 (sum to 1)

• Energy-Based Model
• Energy function: 𝐸𝐸 𝑥𝑥;𝜃𝜃 parameterized by 𝜃𝜃
• 𝑃𝑃 𝑥𝑥 = 1

𝑍𝑍
exp(−𝐸𝐸 𝑥𝑥;𝜃𝜃)

• 𝑍𝑍 = ∫𝑥𝑥 exp −𝐸𝐸 𝑥𝑥; 𝜃𝜃 𝑑𝑑𝑑𝑑 partition function

Why use exp() function?
 e.g. |𝑥𝑥| or 𝑥𝑥 2

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 83

Energy-Based Model

• A particular class of density function
𝑃𝑃 𝑥𝑥 =

1
𝑍𝑍

exp(−𝐸𝐸 𝑥𝑥; 𝜃𝜃)

• Pros
• Common in statistical physics
• Compatible with log-probability measure to capture large variations
• Exponential family (e.g., Gaussian)
• Extremely flexible, i.e., use any 𝐸𝐸(𝑥𝑥) you like (e.g., any 𝑓𝑓 𝑥𝑥 :ℝ𝑑𝑑 → ℝ, even CNNs)

• Cons
• Non-trivial to sample and train due to the partition function 𝑍𝑍De

ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 84

Energy-Based Model: Training

• A particular class of density function
𝑃𝑃 𝑥𝑥 =

1
𝑍𝑍

exp(−𝐸𝐸 𝑥𝑥; 𝜃𝜃)

• Maximum Likelihood Training
• 𝐿𝐿 𝜃𝜃 = log𝑃𝑃(𝑥𝑥) = −𝐸𝐸 𝑥𝑥; 𝜃𝜃 − log𝑍𝑍(𝜃𝜃)
• Monte-Carlo estimates for partition function 𝑍𝑍(𝜃𝜃)

• Contrastive Divergence Algorithm
• ∇𝜃𝜃𝐿𝐿 𝜃𝜃 ≈ ∇𝜃𝜃 −𝐸𝐸 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡;𝜃𝜃 + 𝐸𝐸(𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠; 𝜃𝜃)
• Generating samples is the foundation for both training and generation!

• How to sample from an general energy-based model?
• Or in general: sample from an arbitrary distribution 𝑝𝑝(𝑥𝑥)

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 85

Sampling Methods

• Goal: sampling from 𝑃𝑃(𝑥𝑥)
• Assume we have a valid probability measure
• 𝑃𝑃(𝑥𝑥) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)

• Let’s start from an easy example
• Categorical distribution?
• Solution: uniform sampling, find the category with cumulative density

• The mapping from CDF to value is called Inverse distribution function (quantile function)

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 86

Sampling Methods

• Goal: sampling from 𝑃𝑃(𝑥𝑥)
• Assume we have a valid probability measure
• 𝑃𝑃(𝑥𝑥) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)

• Let’s start from an easy example
• Categorical distribution
• Gaussian distribution?

• No closed-form CDF!
• Central-limit theorem

• Sample 𝑋𝑋𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(0.5)
• 𝐸𝐸 𝑋𝑋𝑖𝑖 = 0.5; 𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋𝑖𝑖 = 0.52

• 𝑆𝑆𝑁𝑁 = 1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝑋𝑋𝑖𝑖

• As 𝑁𝑁 → ∞, 𝑁𝑁(𝑆𝑆𝑁𝑁 − 0.5)~𝑁𝑁 0,0.52
De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 87

Sampling Methods

• Goal: sampling from 𝑃𝑃(𝑥𝑥)
• Assume we have a valid probability measure
• 𝑃𝑃(𝑥𝑥) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)

• Let’s start from an easy example
• Categorical distribution
• Gaussian distribution?

• No closed-form CDF!
• Central-limit theorem
• Box–Muller transform

• Most practical method (FYI)
• Uniform  Normal
• Polar form transformation
De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 88

Sampling Methods

• Goal: sampling from 𝑃𝑃(𝑥𝑥)
• Assume we have a valid probability measure
• 𝑃𝑃(𝑥𝑥) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)

• Let’s start from an easy example
• Categorical distribution
• Gaussian distribution?

• No closed-form CDF!
• Central-limit theorem
• Box–Muller transform
• General case 𝑥𝑥~𝑁𝑁(𝜇𝜇,𝜎𝜎2)
• High-dimensional case 𝑥𝑥~𝑁𝑁(𝜇𝜇, Σ)

• 𝑧𝑧~𝑁𝑁(0, 𝐼𝐼)
• 𝑥𝑥 = Σ𝑧𝑧 + 𝜇𝜇

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 89

Sampling Methods

• Goal: sampling from 𝑃𝑃(𝑥𝑥)
• Assume we have a valid probability measure
• 𝑃𝑃(𝑥𝑥) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)

• Let’s start from an easy example
• Categorical distribution
• Gaussian distribution

• Idea: (1) use “easy” distributions to draw sample & (2) apply mathematical transform
• More complex distribution 𝑝𝑝(𝑥𝑥)?

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 90

Sampling Methods

• Goal: sampling from 𝑝𝑝(𝑥𝑥)
• No CDF or nice mathematical property available

• Idea: weighted samples
• sample from “easy” distribution 𝑞𝑞 𝑥𝑥 (e.g., uniform)
• Use 𝑝𝑝(𝑥𝑥)/𝑞𝑞(𝑥𝑥) as the weight for the sample

• Importance Sampling
• 𝑞𝑞(𝑥𝑥) proposal distribution

• 𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

 importance weight

• E𝑥𝑥∼𝑝𝑝 𝑓𝑓 𝑥𝑥 = E𝑥𝑥~𝑞𝑞
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

𝑓𝑓 𝑥𝑥De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 91

Sampling Methods

• Goal: sampling from 𝑝𝑝(𝑥𝑥)
• No CDF or nice mathematical property available

• Idea: weighted samples
• sample from “easy” distribution 𝑞𝑞(𝑥𝑥) (e.g., uniform)
• Use 𝑝𝑝(𝑥𝑥)/𝑞𝑞(𝑥𝑥) as the weight

• Importance Sampling
• 𝑞𝑞(𝑥𝑥) proposal distribution
• How to choose 𝒒𝒒(𝒙𝒙)???
• 𝑞𝑞(𝑥𝑥) needs to similar to 𝑝𝑝(𝑥𝑥)

• Your homework 

What if we don’t have a universally good proposal?

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 92

Markov Chain Monte-Carlo

• Markov Chain
• A state space 𝑆𝑆, a transition probability 𝑃𝑃 𝑠𝑠𝑗𝑗 𝑠𝑠𝑖𝑖 = 𝑇𝑇𝑖𝑖𝑖𝑖
• 𝑇𝑇 is the transition matrix
• We also use 𝑇𝑇(𝑠𝑠𝑖𝑖 → 𝑠𝑠𝑗𝑗) to denote 𝑇𝑇𝑖𝑖𝑖𝑖

• A Markov Chain has a stationary distribution with a proper 𝑇𝑇
• Current distribution over states 𝜋𝜋𝑡𝑡
• Single step transition 𝜋𝜋𝑡𝑡+1 = 𝑇𝑇𝜋𝜋𝑡𝑡
• Stationary distribution 𝜋𝜋 = 𝑇𝑇∞𝜋𝜋0

• Sampling is easy!
• Goal: construct a Markov Chain

• With a desired stationary distribution 𝜋𝜋 = 𝑝𝑝(𝑠𝑠)!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 93

Markov Chain Monte-Carlo

• How to ensure 𝜋𝜋 is a stationary distribution of a Markov Chain?
• Detailed Balance (sufficient condition)

𝜋𝜋 𝑠𝑠 𝑇𝑇 𝑠𝑠 → 𝑠𝑠′ = 𝜋𝜋 𝑠𝑠′ 𝑇𝑇(𝑠𝑠′ → 𝑠𝑠)

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 94

Markov Chain Monte-Carlo

• How to ensure 𝜋𝜋 is a stationary distribution of a Markov Chain?
• Detailed Balance (sufficient condition)

𝜋𝜋 𝑠𝑠 𝑇𝑇 𝑠𝑠 → 𝑠𝑠′ = 𝜋𝜋 𝑠𝑠′ 𝑇𝑇(𝑠𝑠′ → 𝑠𝑠)
• Design a Markov chain satisfying detailed balance for desired density 𝑝𝑝(𝑠𝑠)!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 95

Markov Chain Monte-Carlo

• How to ensure 𝜋𝜋 is a stationary distribution of a Markov Chain?
• Detailed Balance (sufficient condition)

𝜋𝜋 𝑠𝑠 𝑇𝑇 𝑠𝑠 → 𝑠𝑠′ = 𝜋𝜋 𝑠𝑠′ 𝑇𝑇(𝑠𝑠′ → 𝑠𝑠)
• Design a Markov chain satisfying detailed balance for desired density 𝑝𝑝(𝑠𝑠)!

• How to ensure a unique stationary distribution exist?
• The Markov chain is ergodic（遍历性）!

min
𝑧𝑧

min
𝑧𝑧′:𝜋𝜋 𝑧𝑧′ >0

𝑇𝑇 𝑧𝑧 → 𝑧𝑧′

𝜋𝜋(𝑧𝑧𝑧)
= 𝛿𝛿 > 0

• Examples:

𝑇𝑇 = 1 0
0 1

Intuitively: you can visit any desired state
with positive probability from any state

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 96

Metropolis Hastings Algorithm

• Construct a valid Markov Chain 𝑇𝑇(𝑠𝑠′ → 𝑠𝑠) for distribution 𝑝𝑝(𝑠𝑠)
• Detailed balance: 𝑝𝑝 𝑠𝑠 𝑇𝑇 𝑠𝑠 → 𝑠𝑠′ = 𝑝𝑝 𝑠𝑠′ 𝑇𝑇(𝑠𝑠′ → 𝑠𝑠)
• Ergodicity

• Metropolis Hastings Algorithm
• A proposal distribution 𝑞𝑞 𝑠𝑠′|𝑠𝑠 to produce next state 𝑠𝑠𝑠 based on 𝑠𝑠
• Draw 𝑠𝑠′ ∼ 𝑞𝑞(𝑠𝑠′|𝑠𝑠)

• 𝛼𝛼 = min 1, 𝑝𝑝 𝑠𝑠′ 𝑞𝑞 𝑠𝑠′→𝑠𝑠
𝑝𝑝 𝑠𝑠 𝑞𝑞 𝑠𝑠→𝑠𝑠′

 (𝑞𝑞 𝑠𝑠 → 𝑠𝑠′ to denotes 𝑞𝑞(𝑠𝑠′|𝑠𝑠) for simplicity)

• Transition to 𝑠𝑠𝑠 (accept) with probability 𝛼𝛼 (acceptance ratio);
• O.w., stays at 𝑠𝑠 (reject)

• MH constructs a valid Markov chain with a proper proposal 𝑞𝑞!
• Homework 

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 97

Metropolis Hastings Algorithm: Example

• Choice of 𝑞𝑞(𝑠𝑠 → 𝑠𝑠𝑠)
• Random proposal 𝑞𝑞 𝑠𝑠 → 𝑠𝑠′ = 𝑠𝑠 + noise (i.e., Gaussian/Uniform Noise)

• Acceptance ratio for 𝑠𝑠 → 𝑠𝑠𝑠
• 𝛼𝛼 𝑠𝑠 → 𝑠𝑠′ = min 1, 𝑝𝑝 𝑠𝑠′ 𝑞𝑞 𝑠𝑠′→𝑠𝑠

𝑝𝑝 𝑠𝑠 𝑞𝑞 𝑠𝑠→𝑠𝑠′
= min 1, 𝑝𝑝 𝑠𝑠′

𝑝𝑝 𝑠𝑠

• MH sampling for the energy-based model 𝑝𝑝 𝑠𝑠 = 1
𝑍𝑍

exp(−𝐸𝐸(𝑠𝑠))
• Random initialize 𝑠𝑠0
• 𝑠𝑠′ ← 𝑞𝑞(𝑠𝑠 → 𝑠𝑠𝑠)
• Transition to 𝑠𝑠𝑠 with probability 𝛼𝛼(𝑠𝑠 → 𝑠𝑠𝑠);
• O.w., stays at 𝑠𝑠
• Repeat

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 98

Metropolis Hastings Algorithm: Example

• Choice of 𝑞𝑞(𝑠𝑠 → 𝑠𝑠𝑠)
• Random proposal 𝑞𝑞 𝑠𝑠 → 𝑠𝑠′ = 𝑠𝑠 + noise (i.e., Gaussian/Uniform Noise)

• Acceptance ratio for 𝑠𝑠 → 𝑠𝑠𝑠
• 𝛼𝛼 𝑠𝑠 → 𝑠𝑠′ = min 1, 𝑝𝑝 𝑠𝑠′ 𝑞𝑞 𝑠𝑠′→𝑠𝑠

𝑝𝑝 𝑠𝑠 𝑞𝑞 𝑠𝑠→𝑠𝑠′
= min 1, 𝑝𝑝 𝑠𝑠′

𝑝𝑝 𝑠𝑠

• MH sampling for the energy-based model 𝑝𝑝 𝑠𝑠 = 1
𝑍𝑍

exp(−𝐸𝐸(𝑠𝑠))
• Random initialize 𝑠𝑠0
• 𝑠𝑠′ ← 𝑠𝑠 + noise
• Transition to 𝑠𝑠𝑠 with probability 𝛼𝛼(𝑠𝑠 → 𝑠𝑠𝑠);
• O.w., stays at 𝑠𝑠
• Repeat

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 99

Metropolis Hastings Algorithm: Example

• Choice of 𝑞𝑞(𝑠𝑠 → 𝑠𝑠𝑠)
• Random proposal 𝑞𝑞 𝑠𝑠 → 𝑠𝑠′ = 𝑠𝑠 + noise (i.e., Gaussian/Uniform Noise)

• Acceptance ratio for 𝑠𝑠 → 𝑠𝑠𝑠
• 𝛼𝛼 𝑠𝑠 → 𝑠𝑠′ = min 1, 𝑝𝑝 𝑠𝑠′ 𝑞𝑞 𝑠𝑠′→𝑠𝑠

𝑝𝑝 𝑠𝑠 𝑞𝑞 𝑠𝑠→𝑠𝑠′
= min 1, 𝑝𝑝 𝑠𝑠′

𝑝𝑝 𝑠𝑠

• MH sampling for the energy-based model 𝑝𝑝 𝑠𝑠 = 1
𝑍𝑍

exp(−𝐸𝐸(𝑠𝑠))
• Random initialize 𝑠𝑠0
• 𝑠𝑠′ ← 𝑠𝑠 + noise

• Transition to 𝑠𝑠𝑠 with probability min 1, 𝑝𝑝 𝑠𝑠′

𝑝𝑝 𝑠𝑠
 ;

• O.w., stays at 𝑠𝑠
• Repeat

No partition function involved!De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 100

Metropolis Hastings Algorithm: Example

• Choice of 𝑞𝑞(𝑠𝑠 → 𝑠𝑠𝑠)
• Random proposal 𝑞𝑞 𝑠𝑠 → 𝑠𝑠′ = 𝑠𝑠 + noise (i.e., Gaussian/Uniform Noise)

• Acceptance ratio for 𝑠𝑠 → 𝑠𝑠𝑠
• 𝛼𝛼 𝑠𝑠 → 𝑠𝑠′ = min 1, 𝑝𝑝 𝑠𝑠′ 𝑞𝑞 𝑠𝑠′→𝑠𝑠

𝑝𝑝 𝑠𝑠 𝑞𝑞 𝑠𝑠→𝑠𝑠′
= min 1, 𝑝𝑝 𝑠𝑠′

𝑝𝑝 𝑠𝑠

• MH sampling for the energy-based model 𝑝𝑝 𝑠𝑠 = 1
𝑍𝑍

exp(−𝐸𝐸(𝑠𝑠))
• Random initialize 𝑠𝑠0
• For each iteration 𝑡𝑡

• 𝑠𝑠′ ← 𝑠𝑠𝑡𝑡 + noise
• If 𝐸𝐸 𝑠𝑠′ < 𝐸𝐸 𝑠𝑠𝑡𝑡 ; then accept 𝑠𝑠𝑡𝑡+1 ← 𝑠𝑠𝑠
• Else accept 𝑠𝑠𝑡𝑡+1 ← 𝑠𝑠𝑠 with probability exp 𝐸𝐸 𝑠𝑠𝑡𝑡 − 𝐸𝐸 𝑠𝑠′

• Repeat

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 101

Metropolis Hastings Algorithm

• The simplest way to construct a valid Markov chain
• Flexible, simple and general
• Quiz: proposal 𝒒𝒒 in MH v.s. Importance Sampling

• A: 𝑞𝑞(𝑠𝑠′|𝑠𝑠) v.s. 𝑞𝑞(𝑠𝑠); in MH, 𝑞𝑞 generates local samples; in IS, 𝑞𝑞 outputs “blind” guesses

• Issues
• Curse of dimensionality: samples a completely new state
• Acceptance ratio: what if acceptance rate is low?

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 102

Metropolis Hastings Algorithm

• The simplest way to construct a valid Markov chain
• Flexible, simple and general
• Quiz: proposal 𝒒𝒒 in MH v.s. Importance Sampling

• A: 𝑞𝑞(𝑠𝑠′|𝑠𝑠) v.s. 𝑞𝑞(𝑠𝑠); in MH, 𝑞𝑞 generates local samples; in IS, 𝑞𝑞 outputs “blind” guesses

• Issues
• Curse of dimensionality: samples a completely new state
• Acceptance ratio: what if acceptance rate is low?

• Can we design a proposal distribution 𝑞𝑞(𝑠𝑠 → 𝑠𝑠𝑠) such that it always
gets accepted?

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 103

Gibbs Sampling

• Gibbs sampling
• 𝑠𝑠 = (𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝑁𝑁), we construct a coordinate-wise 𝑞𝑞(𝑠𝑠𝑖𝑖 → 𝑠𝑠𝑖𝑖′)
• 𝑞𝑞 𝑠𝑠𝑖𝑖 → 𝑠𝑠𝑖𝑖′ = 𝑝𝑝(𝑠𝑠𝑖𝑖′|𝑠𝑠𝑗𝑗≠𝑖𝑖) (conditional distribution)

• Dimensionality
• Sample a single coordinate per step.

• Gibbs sampling always get accepted!
• Acceptance ratio is always 1, 𝛼𝛼(𝑠𝑠𝑖𝑖 → 𝑠𝑠𝑖𝑖′) = 1

• Assumption
• An easy to sample conditional distribution

• Conjugate Prior and Exponential Family (https://en.wikipedia.org/wiki/Conjugate_prior)
• What if no closed-form posterior?

• Learn a neural proposal to approximate the true posterior! 
 (meta-learning MCMC proposals, Wang, Wu, et al NIPS2018)

Prove it in your homework 

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 104

Sampling Methods

• What we have learned so far …
• Importance Sampling

• Simplest solution by any proposal distribution
• Metropolis-Hastings algorithm

• Good local proposal  high acceptance ratio
• Gibbs sampling

• Posterior is easy-to-sample
• The “default” method for machine learning among 2002~2012

• General Issues for MCMC methods
• Slow convergence due to sampling (recap: SGD v.s. GD)
• Can we use gradient information for MCMC?

• Energy function is differentiable!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 105

Stochastic Gradient MCMC

• MCMC with Langevin dynamics
• “Bayesian learning via stochastic gradient langevin dynamics”

• ICML 2011, Max Welling& Yee Whye The (ICML 2021 test-of-time award)
• Given 𝑁𝑁 data 𝑋𝑋1, … ,𝑋𝑋𝑁𝑁, define 𝑝𝑝(𝜃𝜃 → 𝜃𝜃𝜃) by

𝜃𝜃′ ← 𝜃𝜃 +
𝜖𝜖𝑡𝑡
2

∇𝜃𝜃 log𝑝𝑝(𝜃𝜃) + �
𝑖𝑖

∇𝜃𝜃 log𝑃𝑃 𝑥𝑥𝑖𝑖 𝜃𝜃 + 𝑁𝑁(0, 𝜖𝜖𝑡𝑡𝐼𝐼)

• Condition for a valid Markov Chain
• ∑𝑡𝑡 𝜖𝜖𝑡𝑡 = ∞ and ∑𝑡𝑡 𝜖𝜖𝑡𝑡2 < ∞
• Interpretation

• (stochastic) gradient descent first (∇𝜃𝜃 is large); MCMC around local minimum (∇𝜃𝜃≈ 0)
• No need of MH acceptance rule

• Additional Reading:
• Hamiltonian Monte Carlo (SGD with momentum): https://arxiv.org/pdf/1701.02434.pdf
• https://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 106

Summary

• Hopfield Network
• The first generative neural network
• Undirected complete graph

• Boltzmann Machine
• A probabilistic interpretation of Hopfield Network
• The first deep generative model

• Energy-Based
• Extremely flexible and powerful, designed to be multi-modal
• Hard to sample and learn
• Sampling is the core challenge!!De

ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 107

What’s Next: Non-Sampling Methods

• Approximate Bayesian Inference
• Variational Inference (next lecture )

• Learn an parameterized distribution to
approximate the true posterior

• Design a model from which we can
easily draw sample!

• Lectures 6 & 7a

• Modern energy-based models
• Scoring matching
• Lecture 7b

Song et. al., 2021
OpenAI Blog: https://openai.com/blog/energy-based-models/De

ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 108

Thanks!

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Lecture 4, Deep Learning, 2025 Spring OpenPsi @ IIIS

3/8 Copyright @ IIIS, Tsinghua University 109

