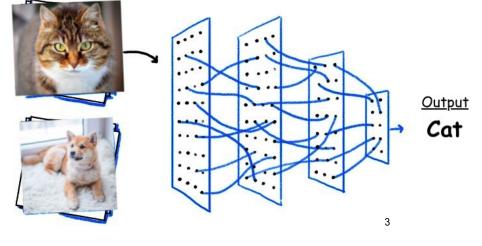
Deep Learning lecture 4 Energy-Based Model Yi Wu, IIIS Spring 2025 Mar-10

Logistics

- Coding Project 2 due in 1 week
 - Use local compute for coding & Colab for testing
 - Cloud for long-term training
 - Any questions can be posted in Dingding channel
 - Be aware of your model size and computation (flops)!
 - Check out those famous models and works!

Story So Far

- History
 - Lecture 1
 - first neural network (1943) to recent advances in deep learning
- Supervised Learning (Classification)
 - Lecture 2
 - MLP and basic components; Backpropagation
 - Lecture 3
 - Algorithms, Tricks and Architecture
- Discriminative Model
 - P(y|X)
 - Labeled data; $X \rightarrow y$



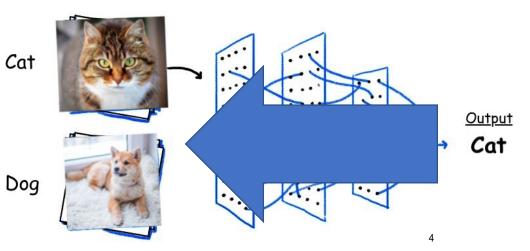
Cat

Dog

Afterwards

- What if we want to generate *X*?
 - E.g., Ask the neural network to generate a cat!
- Generative Model
 - P(X, y) = P(y) * P(X|y)
 - Or just P(X)
- Lecture 4~7
 - Deep Generative Models
 - Different approaches to model P(X)

3/8



Today's Lecture: Energy-Based Models

- A particularly flexible and general form of generative model
- Part 1: Hopfield Network
 - The simplest model that can memorize and generate patterns
- Part 2: Boltzmann Machine
 - The first deep generative model
- Part 3: General Energy-Based Models & Sampling Methods

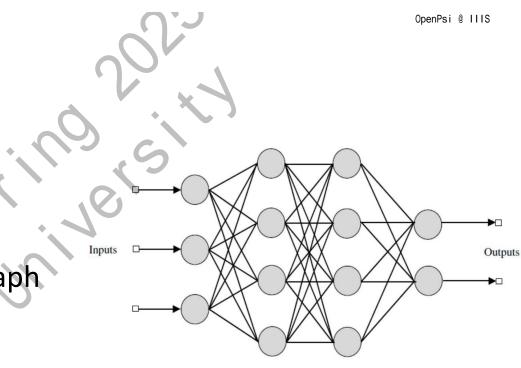
Today's Lecture: Energy-Based Models

- A particularly flexible and general form of generative model
- Part 1: Hopfield Network
 - The simplest model that can memorize and generate patterns
- Part 2: Boltzmann Machine
 - The first deep generative model
- Part 3: General Energy-Based Models & Sampling Methods

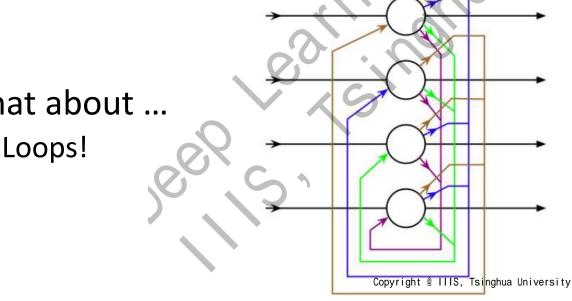
Classification

- Recap: Classification
 - Layer-by-layer computation
 - Computation Graph: Directed Acyclic Graph
 - Feedforward networks

• Loops!

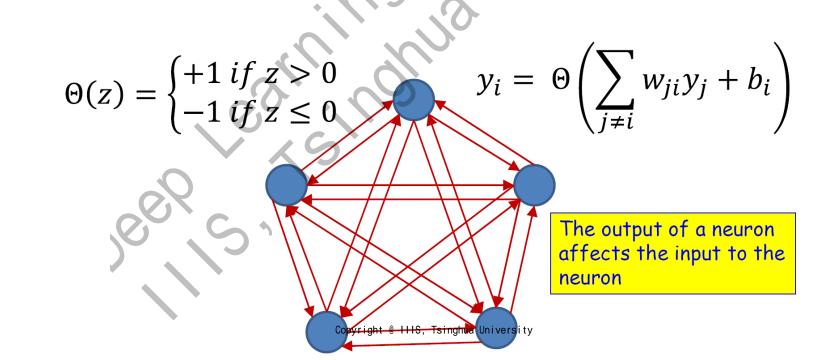


Hidden Layers Output Layer Input Layer



A Loopy Network

- A "fully-connected" network
 - Each neuron receives inputs from all the other neurons
 - $y_i = +1 \ or \ -1$ with hard thresholding



à

- A "fully-connected" network
 - Each neuron receives inputs from all the other neurons
 - $y_i = +1 \ or \ -1$ with hard thresholding
 - Symmetric weights

$$\Theta(z) = \begin{cases} +1 \text{ if } z > 0 \\ -1 \text{ if } z \le 0 \end{cases} \qquad y_i = \Theta\left(\sum_{j \neq i} w_{ji}y_j + b_i\right) \\ \text{A symmetric network:} \\ w_{ij} = w_{ji} \end{cases}$$

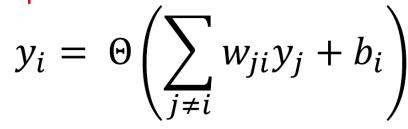
9

- A Hopfield Network may not be stable!
 - At each time each neuron receives a "field" $z_i = \sum_{j \neq i} w_{ji} y_j + b_i$
 - If the sign of neuron matches the sign of the field, it flips

$$y_i \leftarrow -y_i \text{ if } y_i \left(\sum_{i \neq i} w_{ji} y_j + b_i \right) < 0$$

Copyright @ IIIS, Tsinghua

• This can further cause other neurons to flip!



$$\Theta(z)_{\text{University}} = \begin{cases} +1 \text{ if } z > 0\\ -1 \text{ if } z \le 0 \end{cases}$$

10

- Neurons flip if its sign does not match its local "field"
 - $y_i \leftarrow -y_i$ if $y_i (\sum_{j \neq i} w_{ji} y_j + b_i) < 0$ for all neurons

0 IIIS, Tsinghua 🗤

- Repeat until no neuron flips
- Will this process converge?

 $\Theta(z) = \begin{cases} +1 \text{ if } z > 0\\ -1 \text{ if } z \le 0 \end{cases}$

$$y_i = \Theta\left(\sum_{j \neq i} w_{ji} y_j + b_i\right)$$

11

OpenPsi @ IIIS

3/8

- Let y_i^- denote the value of y_i before a "flip"
- Let y_i^+ denote the value of y_i after a "flip"
- If $y_i^-(\sum_{j\neq i} w_{ji}y_j + b_i) \ge 0$, nothing happen $y_i^+ \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) - y_i^- \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) = 0$ $y_i = \Theta\left(\sum_{i \neq i} w_{ji} y_j + b_i\right)$ Copyright @ IIIS, Tsing us Up versity $\begin{cases} +1 \ if \ z > 0 \\ -1 \ if \ z < 0 \end{cases}$ 3/8

Ġ

- Let y_i^- denote the value of y_i before a "flip" Let y_i^+ denote the value of y_i after a "flip" If $y_i^-(\sum_{j \neq i} w_{ji}y_j + b_i) \ge 0$, nothing happen

• If
$$y_i^-(\sum_{j \neq i} w_{ji}y_j + b_i) < 0, y_i^+ = -y_i^-$$

 $y_i^+(\sum_{j \neq i} w_{ji}y_j + b_i) - y_i^-(\sum_{j \neq i} w_{ji}y_j + b_i) = 2y_i^+(\sum_{j \neq i} w_{ji}y_j + b_i)$
 $y_i = \Theta\left(\sum_{j \neq i} w_{ji}y_j + b_i\right)$
 $y_i = \Theta\left(\sum_{j \neq i} w_{ji}y_j + b_i\right)$
Copyright & IIIS, Thing Zup versity $\begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z \leq 0 \end{cases}$

à

13

- Let y_i^- denote the value of y_i before a "flip"
- Let y_i^+ denote the value of y_i after a "flip"
- If $y_i^-(\sum_{j\neq i} w_{ji}y_j + b_i) \ge 0$, nothing happen

• If
$$y_i^- (\sum_{j \neq i} w_{ji}y_j + b_i) < 0, y_i^+ = -y_i^-$$

 $y_i^+ (\sum_{j \neq i} w_{ji}y_j + b_i) - y_i^- (\sum_{j \neq i} w_{ji}y_j + b_i) = 2y_i^+ (\sum_{j \neq i} w_{ji}y_j + b_i)$ Positive!
 $y_i = \Theta \left(\sum_{j \neq i} w_{ji}y_j + b_i\right)$
 $y_i = \Theta \left(\sum_{j \neq i} w_{ji}y_j + b_i\right)$
3/8

Every flip increases

 $2y_i(\sum_{j\neq i} w_{ji} y_j + b_i)$

• Consider the sum over every pair of neurons (assume $w_{ii} = 0$)

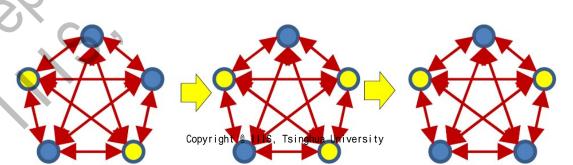
$$D(y_1, \dots, y_N) = \sum_{i \le i} y_i w_{ij} y_j + y_i b_i$$

• Any flip that changes y_i^- to y_i^+ increases $D(y_1, ..., y_N)$

$$\Delta D = D(\dots, y_i^+, \dots) - D(\dots, y_i^-, \dots) = 2y_i^+ \left(\sum_{i=1}^{n} w_{ji}y_j + b_i\right) > 0$$

\j≠i

• Convergence?



15

• D is upper-bounded (we only change y_i)

$$D(y_1, \dots, y_N) = \sum_{i < j} w_{ij} y_i y_j + \sum_i b_i y_i \le \sum_{i < j} |w_{ij}| + \sum_i |b_i|$$

5

• ΔD is lower-bounded

$$\Delta D_{\min} = \min_{i, \{y_j\}} 2 \left| \sum_j w_{ij} y_j + b_i \right| > 0$$

- {y_i} converges with a finite number of iterations!
 {y_i}: state Copvr

3/8

Hopfield Network

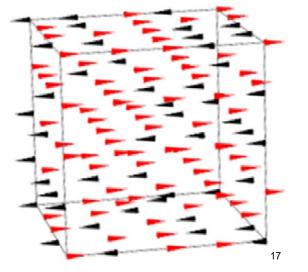
• The *Energy* of Hopfield Network

$$E = -D = -\sum_{i \le i} w_{ij} y_i y_j - \sum_i b_i y_i$$

- The evolution of Hopfield network always decreases its energy!
- The concept of *Energy*
 - Magnetic dipoles in a disordered magnetic material
 - Each dipole tries to align itself to the local field
 - Field at a particular dipole $f(p_i)$, p_i is the position of x_i

$$f(p_i) = \sum_{j \neq i} J_j x_j + b_i$$

Ising model of magnetic materials (Ising and Lenz, 1924)



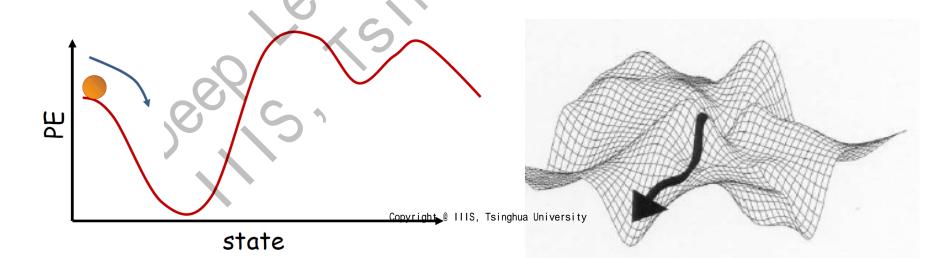
3/8

Hopfield Network: Pattern Generation

• The Hopfield network (simplified)

$$E = -\sum_{i < j} w_{ij} y_i y_j$$

- Network evolution arrives at a local optimum in the energy contour
 - Every change in the network state Y decreases the energy E
- Any small jitter from this stable state returns it to the stable state



18

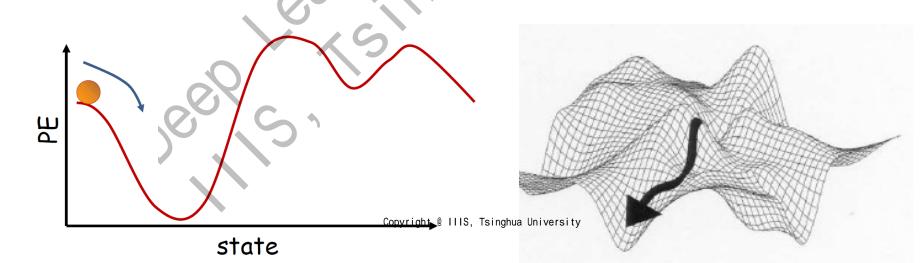
3/8

Hopfield Network: Pattern Generation

• The Hopfield network (simplified)

$$E = -\sum_{i < i} w_{ij} y_i y_j$$

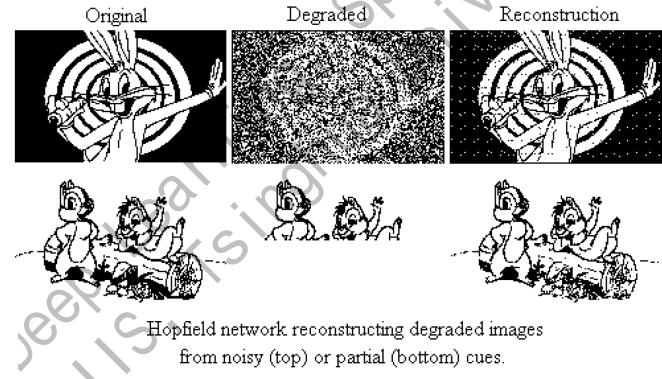
- Each local optimum state is a "stored" pattern
 - If the network is initialized close to a stored pattern, it evolves to the pattern
- Associated Memory (content addressable memory)



19

Hopfield Network: Pattern Generation

• Image Reconstruction by Hopfield Network (1982)

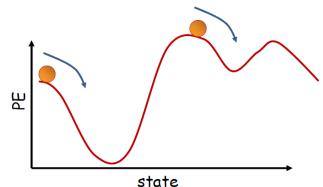


• How can we store the desired patterns?

- Let's teach the network to store this image
 - N pixels $\rightarrow N$ neurons
 - Symmetric weights $\rightarrow \frac{1}{2}N(N-1)$ parameters to learn
 - We omit bias terms for simplicity
- Design $\{w_{ij}\}$ such that the energy is at a local minimum for a desired pattern y
 - Hebbian Learning Rule $w_{ij} \leftarrow y_i y_j$ (1949)
 - $E = -\sum_{i < j} w_{ij} y_i y_j = -\frac{1}{2} N(N-1) \rightarrow \text{lowest possible energy!}$

OpenPsi @ IIIS

- Let's teach the network to store this image
 - N pixels $\rightarrow N$ neurons
 - Symmetric weights $\rightarrow \frac{1}{2}N(N-1)$ parameters to learn
 - We omit bias terms for simplicity
- Design $\{w_{ij}\}$ such that the energy is at a local minimum for a desired pattern y
 - Redundancy! y & y will be both stored

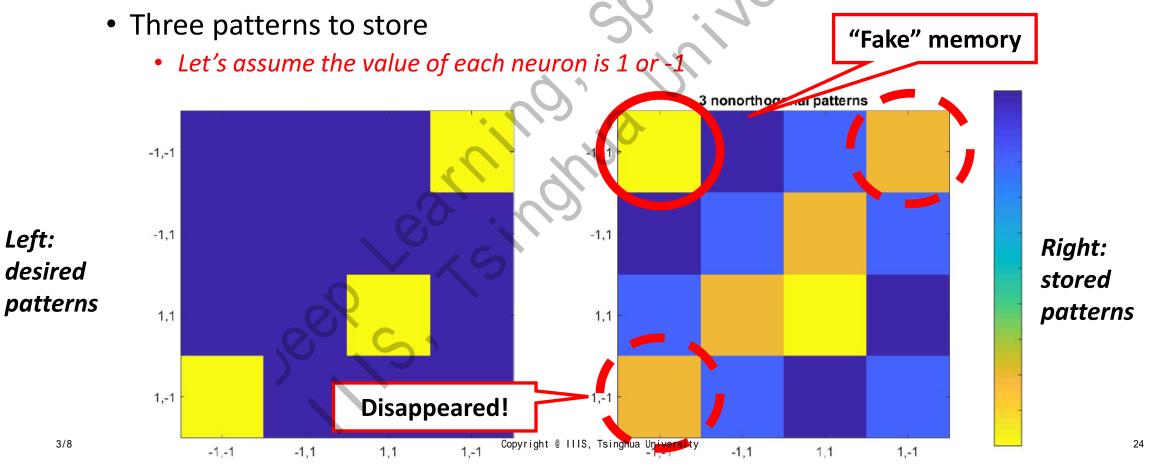


OpenPsi @ IIIS

- What if we want to store *multiple* patterns?
 - $P = \{y^p\} N_p$ patterns
 - Hebbian Learning Rule

- The issue of Hebbian Learning
 - Spurious local optima

• Example: 4-dimensional Hopfield Network with Hebbian Learning



- We want to construct a network with desired *stable* local optimum
 - A pattern can be recovered after 1-bit change
- For a specific set of K patterns, we can always build a network for which all patterns are stable provided $K \leq N$
 - Mostafa and St. Jacques (1985)
 - For large N, the upper bound on K is actually $\frac{N}{4} \log N$
 - McElice et. al. (1987)
 - Still possible with undesired local minimum
- How can we find the weights?
 - K patterns to be stored
 - Avoid undesired local minimum as much as we can

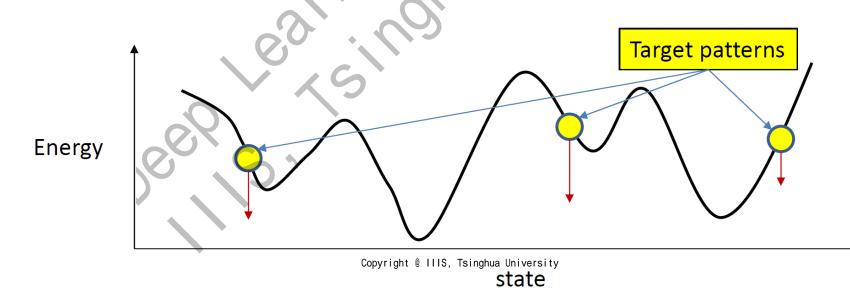
- Problem Formulation
 - Desired patterns $P = \{y^p\}$
 - Energy function $E(y) = -\frac{1}{2}y^T W y$ (we omit bias term for simplicity)
- Objective for *W*
 - Minimize *E* for all y^p
 - It should also maximize E for all non-desired patterns!

$$W = \arg\min_{W} \sum_{y \in P} E(y) - \sum_{y' \notin P} E(y')$$

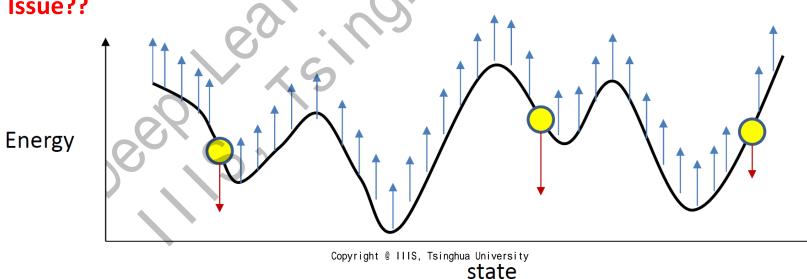
Hopfield Network: Optimization • Update rule for W $W \leftarrow W - \eta$ Energy

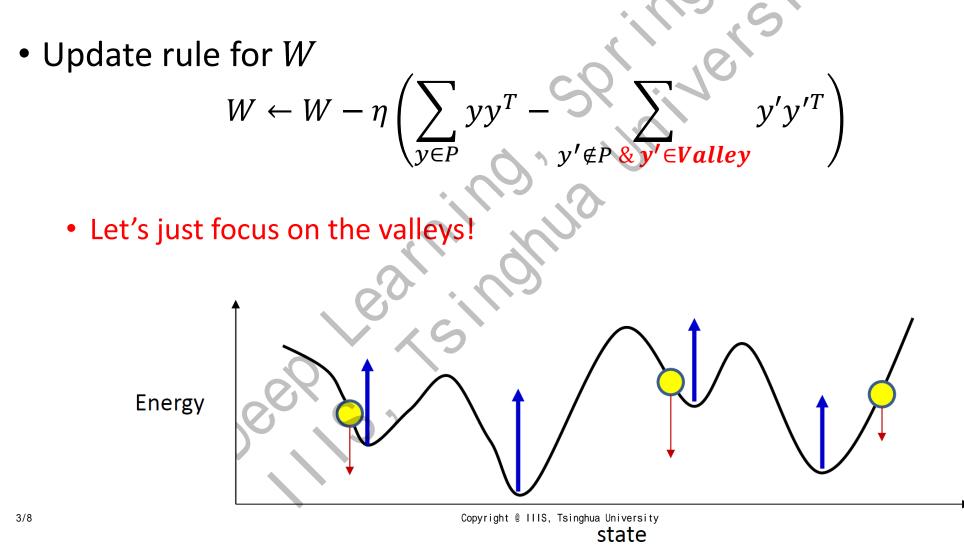
• Update rule for *W*

• The first term is minimizing the energy of desired patterns!



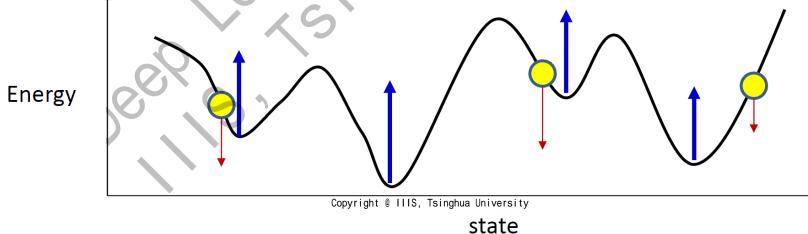
- Update rule for W $W \leftarrow W - \eta$
 - The second term essentially raises all the patterns in the space
 - Issue??





31

- Update rule for W $W \leftarrow W - \eta \left(\sum_{y \in P} yy\right)$ $' - \sum_{y' \notin P \& y' \in Valley}$
 - Let's just focus on the valleys!
 - But how can we find the valley •



- Update rule for W $W \leftarrow W - \eta \left(\sum_{y \in P} yy^T - \sum_{y' \notin P \& y' \in Valley} y'y'^T - y' \notin P \& y' \in Valley} \right)$
 - Let's just focus on the valleys!
 - But how can we find the valleys?
 - Evolution of Hopfield Network will converge to a valley

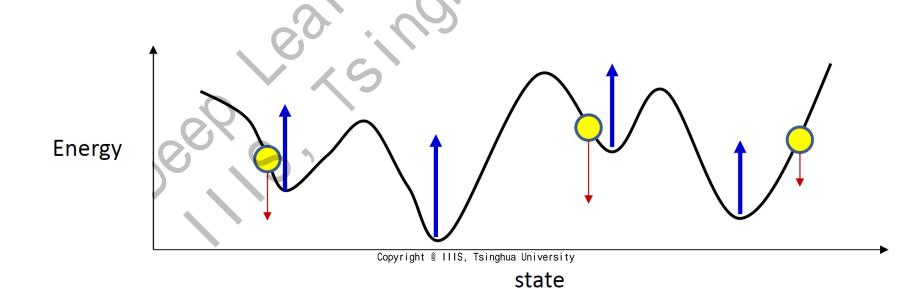
state

- Update rule for W $W \leftarrow W - \eta \left(\sum_{y \in P} yy^T - \sum_{y' \notin P \& y' \in Valley} y'y'^T \right)$
 - Compute outer-products of desired patterns y
 - Randomly initialize y' for multiple times
 - Run evolution for random y' until convergence
 - Calculate outer-product of y^o
 - Compute gradient and update W

- Update rule for W $W \leftarrow W - \eta \left(\sum_{y \in P} yy^T - \sum_{y' \notin P \And y' \in Valley} y'y'^T \right)$
 - Compute outer-products of desired patterns y
 - Randomly initialize y' for multiple times
 - Run evolution for random y' until convergence
 - Calculate outer-product of y^o
 - Compute gradient and update W
 - Valleys are NOT equivalently important...

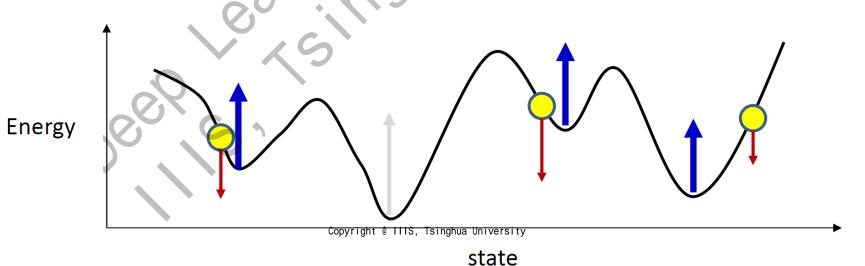
35

- Which valleys are important?
- Primary object: ensure desired pattens stable
 - We want to ensure desired patterns are in broad valleys



36

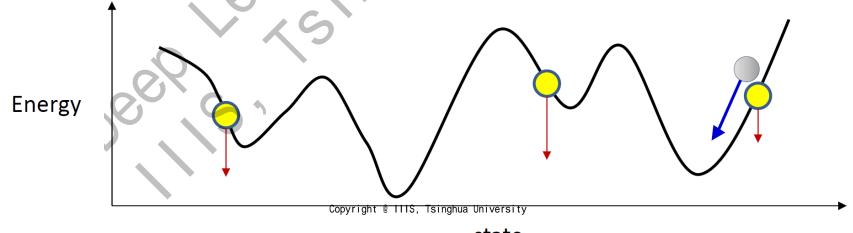
- Which valleys are important?
- Primary object: ensure desired pattens stable
 - We want to ensure desired patterns are in broad valleys
 - Spurious valleys around desired patterns are more important to eliminate



37

Hopfield Network: Optimization

- Which valleys are important?
- Primary object: ensure desired pattens stable
 - We want to ensure desired patterns are in broad valleys
 - Spurious valleys around desired patterns are more important to eliminate
 - Evolution from desired patterns



state

Hopfield Network: Optimization

- Update rule for W $W \leftarrow W - \eta \left(\sum_{y \in P} yy^T - \sum_{y' \notin P \And y' \in Valley} y'y'^T \right)$
 - Compute outer-products of desired patterns y
 - Initialize y' by all the desired patterns
 - Run evolution for random y' until convergence
 - Calculate outer-product of y^o
 - Compute gradient and update W
 - Still issues?

Hopfield Network: Optimization

• Recap: we raise the valleys next to the desired patterns

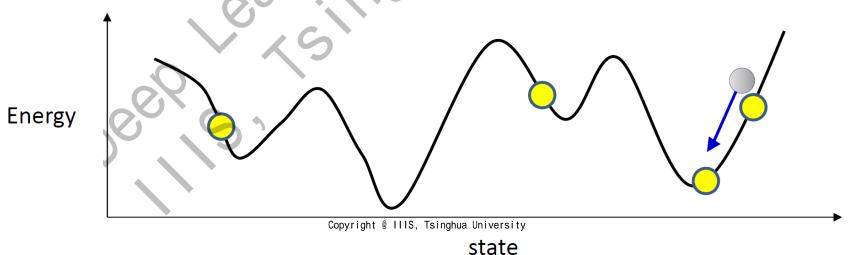
Stutun

Copyright @ IIIS, Tsinghua University

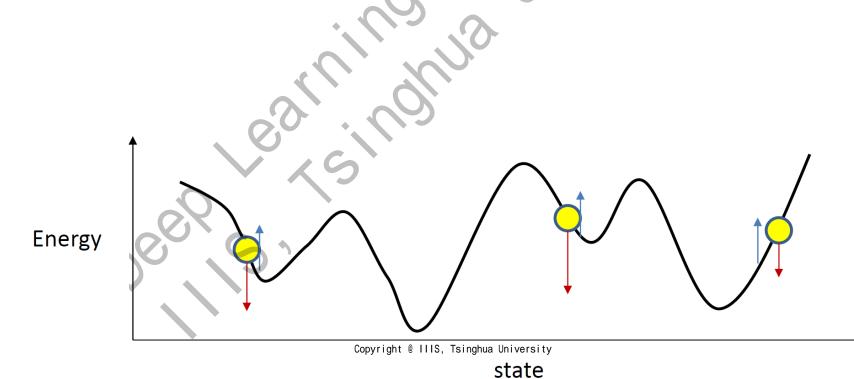
40

Hopfield Network: Optimization

- Recap: we raise the valleys next to the desired patterns
- What if a pattern is close to the valley?
 - Naively forcing a valley to raise may hurt the learned representation
 - Particularly challenging when y are continuously valued (e.g., tanh activation)



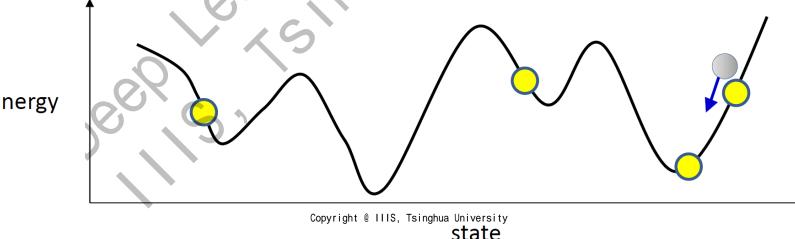
- New idea: we only raise the "neighborhood" of desired patterns!
 - It is sufficient to make each desired pattern a valley
 - Note: we want to raise the neighborhood of the decent direction



3/8

41

- New idea: we only raise the "neighborhood" of desired patterns!
 - It is sufficient to make each desired pattern a valley
 - Note: we want to raise the neighborhood of the decent direction
- Implementation
 - We initialize y' by the desired patterns
 - Only perform evolution for a few steps!



Energy

42

Hopfield Network: SGD Optimization

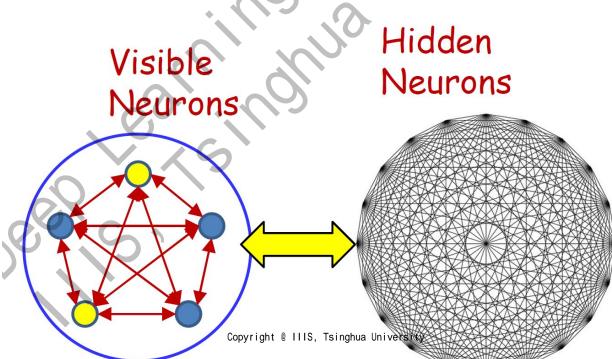
• SGD update rule for W

$$W \leftarrow W - \eta \left(\mathbf{E}_{y \in P} [y y^T] - \mathbf{E}_{y'} [y' y'^T] \right)$$

- Compute outer-products of random desired pattern y
- Initialize y' by a random desired pattern
 - Run evolution for random y' for a few timesteps (2~4)
 - Calculate outer-product of y'
- Compute gradient and update W
- In theory, O(N) patterns can be stored in the network (with undesired valleys)
 - How to store more patterns?

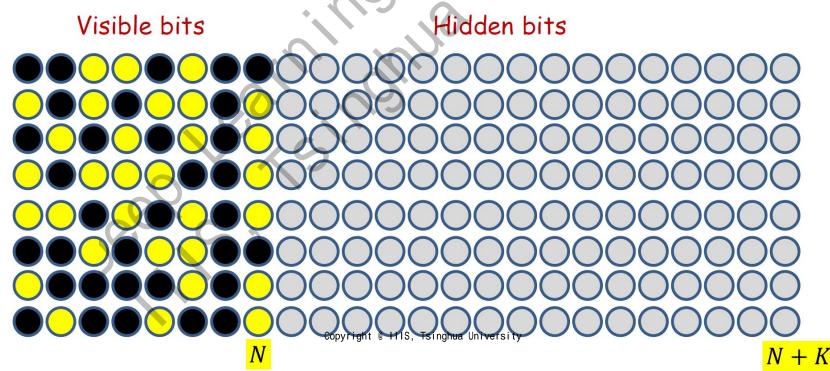
The Expanded Network

- Idea: introduce redundant neurons to increase network capacity
- Original N neurons for patterns: visible neurons
- Additional *K* neurons: hidden neurons



The Expanded Network

- Idea: introduce redundant neurons to increase network capacity
- Original N neurons for patterns: visible neurons
- Additional K neurons: hidden neurons



3/8

The Expanded Network

- 10,202:X
- N dimensional pattern $\rightarrow N + K$ dimension
 - Q1: How can we store the patterns with *K* additional units? (random filling?)
 - Q2: How to retrieve the desired patterns? (perform evolution?)

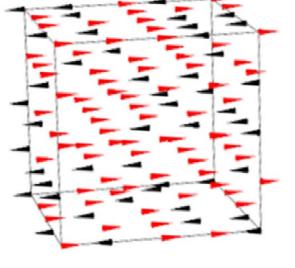
Visible bits Hidden bits We will have an elegant solution by converting a Hopfield network to a probabilistic model P(v, h)!

46

Today's Lecture: Energy-Based Models

- A particularly flexible and general form of generative model
- Part 1: Hopfield Network
 - The simplest model that can memorize and generate patterns
- Part 2: Boltzmann Machine
 - The first deep generative model
- Part 3: General Energy-Based Models & Sampling Methods

- Recap: A thermodynamic (热力学) system
 - A probabilistic system
 - Hopfield network is a simplified deterministic version
- A thermodynamic system at temperature T
 - $P_T(S)$ the probability of the system at state S
 - $E_T(S)$ the potential energy at state S
 - U_T the internal energy, the capability to do work
 - H_T the entropy, internal disorder of the system
 - k Boltzmann constant
 - Free energy $F_T = U_T kTH_T$



48

OpenPsi @ IIIS

The Helmholtz Free Energy

- Free energy $F_T = \sum_{S} P_T(S) E_T(S) + kT \sum_{S} P_T(S) \log P_T(S)$
- Boltzmann distribution (also known as Gibbs distribution)

$$P_T(S) = \frac{1}{Z} \exp\left(-\frac{E_T(S)}{kT}\right)$$

- Minimum Free-Energy Principle: minimize F_T w.r.t. $P_T(S)$
- The probability distribution of states at equilibrium
- Z normalizing constant

Given an energy function $E_T(S)$, if we follow a proper physical evolution process, the system state will converge to the Boltzmann distribution

- Let's model our Hopfield network as a thermodynamic system
 - T = k = 1 for simplicity
 - Energy

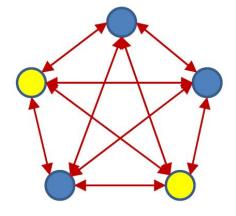
3/8

$$E(y) = -\sum_{i < j} w_{ij} y_i y_j - b_i y_i$$

Boltzmann Probability

$$P(y) = \frac{1}{Z} \exp(-E(y)) = \frac{1}{Z} \exp\left(\sum_{i < j} w_{ij} y_i y_j + b_i y_i\right)$$

- Stochastic Hopfield Network
 - P(y) models the stationary probability distribution of states y given E(y)
 - We generate patterns by sampling from P(y)



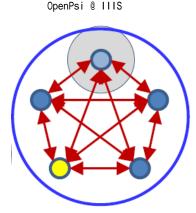
- Let's consider the "flip" operation
 - Deterministic \rightarrow probabilistic
 - Goal: change y_i to 1 with probability $P(y_i = 1 | y_{j \neq i})$
- Assume y and y' only differ at position i and $y'_i = -1$

•
$$\log P(y) = -E(y) + C$$

•
$$E(y) = -\sum_{i < j} w_{ij} y_i y_j - b_i y_i$$

•
$$\log P(y) - \log P(y') = E(y') - E(y) = -\sum_{j} w_{ij} y_j - 2b_i$$

 $\log \frac{P(y)}{P(y')} = \log \frac{P(y_i = 1|y_{j\neq i})P(y_{j\neq i})}{P(y'_i = -1|y'_{j\neq i})P(y'_{j\neq i})} = \log \frac{P(y_i = 1|y_{j\neq i})}{1 - P(y_i = 1|y_{j\neq i})} = -\sum_{j} w_{ij} y_j - 2b_i$



- Let's consider the "flip" operation
 - Deterministic \rightarrow probabilistic
 - Goal: change y_i to 1 with probability $P(y_i = 1 | y_{j \neq i})$
- Assume y and y' only differ at position i and $y'_i = -1$

•
$$\log P(y) = -E(y) + C$$

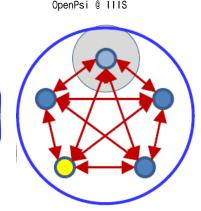
•
$$E(y) = -\sum_{i < j} w_{ij} y_i y_j - b_i y_i$$

$$\log P(y) - \log P(y') = E(y') - E(y) = -\sum_{j} w_{ij} y_j - 2b_i$$

$$\log \frac{P(y)}{P(y')} = \log \frac{P(y_i = 1 | y_{j \neq i}) P(y_{j \neq i})}{P(y'_i = -1 | y'_{j \neq i}) P(y'_{j \neq i})} = \log \frac{P(y_i = 1 | y_{j \neq i})}{1 - P(y_i = 1 | y_{j \neq i})} = -\sum_{j} w_{ij} y_j - 2b_i$$

• A sigmoid conditional: $P(y_i = 1 | y_{j \neq i}) = \frac{1}{1 + \exp(-\sum_j w_{ij} y_j - 2b_i)}$

This is also called Gibbs sampling (remember the name for now C)



- The whole update rule
 - Field at $y_i: z_i = \sum_j w_{ij} y_j + 2b_i$
 - $P(y_i = 1 | y_{j \neq i}) = \frac{1}{1 + \exp(-z_i)} = \sigma(z_i)$ delta energy of flip
- Evolving the network
 - Randomly initialize y
 - Cycle over y_i , fixed other variables fixed and sample y_i according to the conditional probability

Field quantifies the

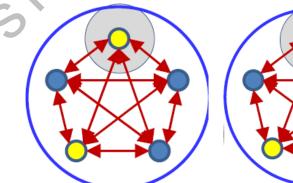
- After "convergence", we can get samples of y according to P(y)
- This sampling procedure is called Gibbs sampling
- How can we retrieve a stored pattern???
 - This is a stochastic process!

OpenPsi @ IIIS

- Network evolution
 - initialize y_0
 - For $1 \le i \le N$, $y_i(t+1) \sim Bernoulli(\sigma(z_i(t)))$
 - Until convergence
- Retrieve a stored (low energy / high probability) pattern y
 - Given sequence of samples y_0, \dots, y_L
 - Simply take the average of final *M* samples

$$y_i = I \left[\frac{1}{M} \sum_{t=L-M+1}^{L} y_i(t) > 0 \right]$$

- If you want a probability instead of a single vector, you can use the frequency derived from $\{y_{L-M+1}, ..., y_L\}$ to approximate the stationary distribution
- In many applications, we simply take M_{interset} (output y_L)



Stochastic Hopfield Network: Annealing

- Find the state with lowest energy?
- Network evolution with temperature annealing
 - initialize $y_0, T \leftarrow T_{\max}$
 - Repeat

3/8

- Repeat a few cycles For $1 \le i \le N$, $y_i(T) \sim Bernoulli\left(\sigma\left(\frac{1}{T}z_i(T)\right)\right)$ $y_i(\alpha T) \leftarrow y_i(T); T \leftarrow \alpha T$
- Until convergence
- Final state as the retrieved pattern
 - With temperature annealing, the system will converge to the most likely state
 - Possibly local minimum in practice, Tsinghua University

Boltzmann Machine

- A generative Model (simplified)
 - $E(y) = -\frac{1}{2}y^T W y$ • $P(y) = \frac{1}{2} \exp\left(-\frac{E(y)}{T}\right)$
 - Parameter W
- It has a probability for producing any binary pattern y
 - We assume $y_i = 0$ or 1 (or ± 1)

$$z_i = \frac{1}{T} \sum_j w_{j,i} y_j$$

Ġ

How to learn W for desired patterns?

Boltzmann Machine: Training

- Goal
 - Remember a set of desired patterns $P = \{y^p \}$
 - Now we have a probability distribution P(y) with parameter W
- Objective: maximum likelihood learning (assume T = 1)
 - Probability of a particular pattern

$$P(y) = \frac{\exp\left(\frac{1}{2}y^T W y\right)}{\sum_{y'} \exp\left(\frac{1}{2}y'^T W y'\right)}$$

Maximize log-likelihood

$$L(W) = \frac{1}{N_P} \sum_{y \in P} \frac{1}{2} y^T W y - \log \sum_{\substack{y' \\ \text{Copyright @ IIIS, Tsinghua University}}} \exp\left(\frac{1}{2} y'^T W y'\right)$$

 Maximize log-likelihood $L(W) = \frac{1}{N_P} \sum_{y \in P} \frac{1}{2} y^T W y - \log \sum_{y'} \exp\left(\frac{1}{2}\right)$ $\frac{1}{2}v'^TWy'$ • Gradient Ascent $\nabla_{w_{ij}}L$

 Maximize log-likelihood $L(W) = \frac{1}{N_{1}}$ Wy'exp log $y \in P$ • Gradient Ascent $\nabla_{w_{ij}}L$ • $\nabla_{w_{ij}}L = \frac{1}{N_P} \sum_{y \in P} y_i y_j$

terms

60

Boltzmann Machine: Training

• Maximize log-likelihood

$$L(W) = \frac{1}{N_P} \sum_{y \in P} \frac{1}{2} y^T W y - \log \sum_{y'} \exp\left(\frac{1}{2} y'^T W y'\right)$$
• Gradient Ascent $\nabla_{W_{ij}} L$
• $\nabla_{W_{ij}} L = \frac{1}{N_P} \sum_{y \in P} y_i y_j - \sum_{y'} \frac{\exp\left(\frac{1}{2} y'^T W y'\right)}{Z} \cdot y'_i y'_j$ Exponentially many

Copyright @ IIIS, Tsinghua University

Boltzmann Machine: Training

• Maximize log-likelihood

$$L(W) = \frac{1}{N_P} \sum_{y \in P} \frac{1}{2} y^T W y - \log \sum_{y'} \exp\left(\frac{1}{2} y'^T W y'\right)$$
• Gradient Ascent $\nabla_{W_{ij}} L$
• $\nabla_{W_i} L = \frac{1}{2} \sum_{y \in P} y_i y_i = \sum_{w} \frac{\exp\left(\frac{1}{2} y'^T W y'\right)}{\frac{\exp\left(\frac{1}{2} y' Y' W y'\right)}$

- $v_{w_{ij}L} = \frac{1}{N_P} \sum_{y \in P} y_i y_j = \sum_{y'} \frac{1}{Z} \cdot y_i y_j$ $\nabla_{w_{ij}L} = \frac{1}{N_P} \sum_{y \in P} y_i y_j E_{y'} [y'_i y'_j]$ Monte-Carlo Approximation Draw a set of samples *S* for *y'* according to the probability,

•
$$\nabla_{w_{ij}}L = \frac{1}{N_P} \sum_{y \in P} y_i y_j - \frac{1}{|S|} \sum_{y' \in S} y'_i y'_j$$

Boltzmann Machine: Training

- Maximize log-likelihood with *M* Monte-Carlo samples $\nabla_{w_{ij}} L(W) = \frac{1}{N_P} \sum_{y \in P} y_i y_j - \frac{1}{M} \sum_{y' \in S} y'_i y'_j$
- How to draw samples from P(y)?
 - Running the stochastic network (Gibbs sampling)
 - Randomly initialize y(0)
 - Cycle over $y_i(t)$, sampling according to $P(y_i(t)|y_{j\neq i}(t))$
 - After convergence, we get a sequence of samples $\{y(0), ..., y(L)\}$
 - Get the final M states as samples $S = \{y(L M + 1), ..., y(L)\}$

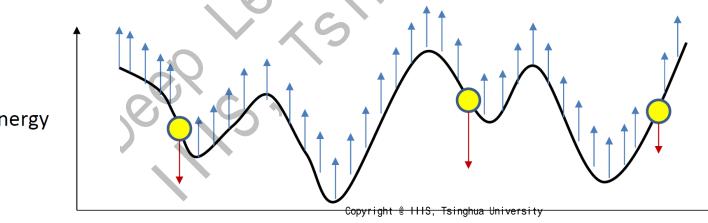
63

Boltzmann Machine: Training

- Overall Training
 - Initialize W
 - Maximize log-likelihood with *M* Monte-Carlo samples

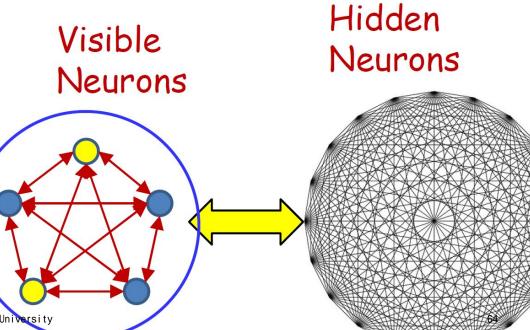
$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P} \sum_{y \in P} y_i y_j - \frac{1}{M} \sum_{y' \in S} y'_i y'_j$$

•
$$w_{ij} \leftarrow w_{ij} + \eta \nabla_{w_{ij}} L(W)$$
 (we are maximizing likelihood)



Energy

- Let's get back to hidden neurons!
 - v visible neurons (visible patterns), h hidden neurons (latent variables)
 - y = (v, h)
- A joint probability distribution
 - P(y) = P(v,h)
 - $P(v) = \sum_{h} P(v, h)$
 - We only care about patterns
 - The marginal distribution!
- New objective
 - Maximize the marginal probability



• Maximum log-likelihood learning

$$P(v) = \sum_{h} P(v,h) = \sum_{h} \frac{\exp(y^T W y)}{\sum_{y'} \exp(y'^T W y')}$$

$$L(W) = \frac{1}{|P|} \sum_{v \in P} \log\left(\sum_{h} \exp(y^T W y)\right) - \log\left(\sum_{y'} \exp(y'^T W y')\right)$$
• Gradient $\nabla L(W)$?

• Maximum log-likelihood learning

$$P(v) = \sum_{h} P(v,h) = \sum_{h} \frac{\exp(y^T W y)}{\sum_{y'} \exp(y'^T W y')}$$

$$L(W) = \frac{1}{|P|} \sum_{v \in P} \log\left(\sum_{h} \exp(y^T W y)\right) - \log\left(\sum_{y'} \exp(y'^T W y')\right)$$
• Gradient $\nabla L(W)$?
Monte-Carlo Estimate!

66

- Maximum log-likelihood learning $P(v) = \sum_{h} P(v,h) = \sum_{h} \frac{\exp(y^T W y)}{\sum_{y'} \exp(y'^T W y')}$ $L(W) = \frac{1}{|P|} \sum_{v \in P} \log\left(\sum_{h} \exp(y^T W y)\right) - \log\left(\sum_{y'} \exp(y'^T W y')\right)$
- Gradient $\nabla L(W)$?
 - The first term is also in the form of log-sum
 - Monte Carlo estimates for each $v \in P$!

Maximum log-likelihood learning

$$\nabla_{w_{ij}} L(W) = \frac{1}{|P|} \sum_{v \in P} E_h[y_i y_j] - E_{y'}[y'_i y'_j]$$

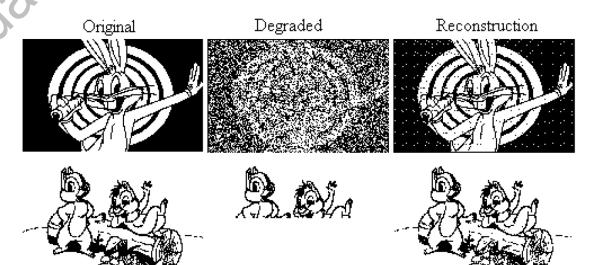
- Second term
 - Freely generate samples w.r.t. p(y)
 - Random initialization, cyclic Gibbs sampling
- First term
 - Generate samples w.r.t. p(y) conditioned on a fixed v
 - Randomly initialize *h*, run Gibbs sampling over *h*

- Overall Training
 - Initialize W
 - For $v \in P$, fixed the visible neurons, run Gibbs sampling to get K samples
 - Collect all conditioned samples as S_c
 - Randomly initialize all neurons, run Gibbs sampling to get M samples
 - Collect free samples as S
 - Maximize log-likelihood with $N_pK + M$ Monte-Carlo samples

 $\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{y \in S_c} y_i y_j - \frac{1}{M} \sum_{y' \in S} y'_i y'_j$ • $w_{ij} \leftarrow w_{ij} + \eta \nabla_{w_{ij}} L(W)$

Boltzmann Machine

- Summary
 - A stochastic version of Hopfield Network
 - Nice mathematical properties
 - Large capacity for storing patterns (with hidden neurons)
 - Pattern generation
 - Gibbs sampling
 - Pattern completion
 - Conditioned Gibbs sampling
 - Classification??
 - y = (v, h, c), c is label
 - c as a one-hot vector (0-1 variables)
 - Posterior P(c|v)
 - Even conditional generation: $P_{Co}(\mathcal{V}_{Ig} \mathcal{L}_{0})$, $I_{IS, Tsinghua University}$



Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

Boltzmann Machine

ring 2024

• The issue

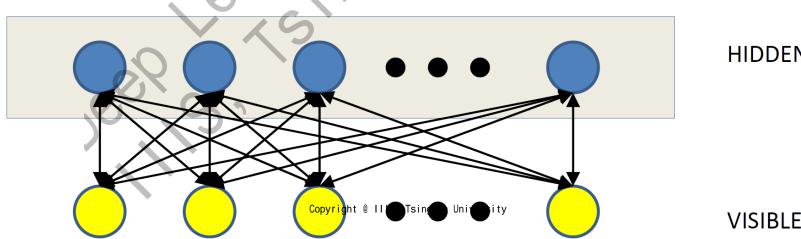
3/8

- Training is hard!
- Gibbs sampling may take a very long time to converge
 - also called *mixing-time*
- Not really applicable for large problems
- Can we design a better structure for faster Gibbs sampling mixing?

72

Restricted Boltzmann Machine

- A particularly structured Boltzmann Machine
 - A partitioned structure
 - Hidden neurons are only connected to visible neurons
 - No intra-layer connections
 - Invented under the name Harmonium by Paul Smolensky in 1986
 - Became promise after Hinton invented fast learning algorithms in mid-2000



HIDDEN

Restricted Boltzmann Machine

- Computation Rules: same as Boltzmann machine
 - Hidden neurons h_i
 - $z_i = \sum_j w_{ij} v_j$, $P(h_i = 1 | v_j) = \frac{1}{1 + \exp(-z_i)}$
 - Visible neurons v_i

$$z_j = \sum_i^j w_{ij} h_i$$
, $P(v_j = 1 | h_i) = \frac{1}{1 + \exp(-z_j)}$

Iterative Sampling!

VISIBLE

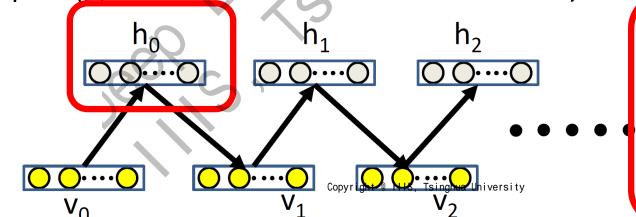
73

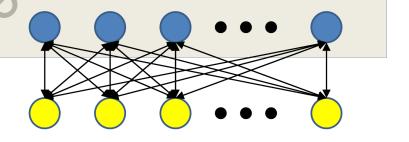
Restricted Boltzmann Machine

• Sampling

3/8

- Randomly initialize visible neurons v_0
- Iterative between hidden and visible neurons
- Get final sample (v_{∞}, h_{∞})
- Conditioned sampling?
 - Initialize v_0 as the desired pattern
 - Sample *h*₀ (the conditional distribution is exact!)





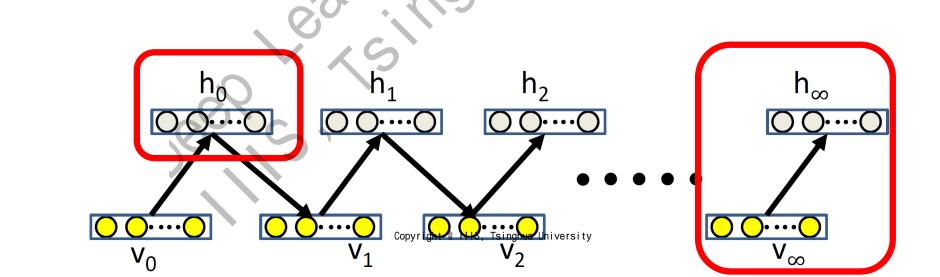
VISIBLE

HIDDEN

OpenPsi @ IIIS

3/8

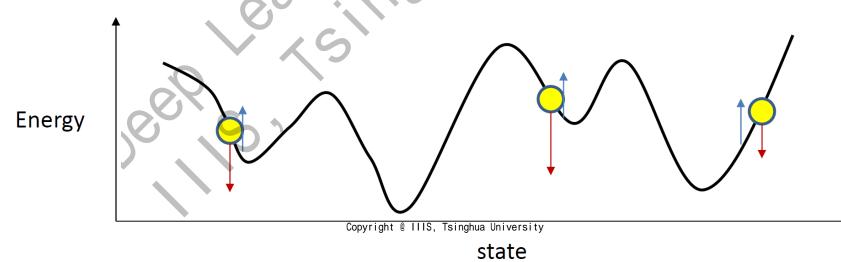
- Maximum Likelihood Estimate $\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{v \in P} v_{0_i} h_{0_j} - \frac{1}{M} \sum_{v \infty_i} v_{\infty_i} h_{\infty_j}$
 - No need to lift up the entire energy landscape ... (recap)



• Maximum Likelihood Estimate

$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{v \in P} v_{0_i} h_{0_j} - \frac{1}{M} \sum_{v \sim i} v_{\infty_i} h_{\infty_j}$$

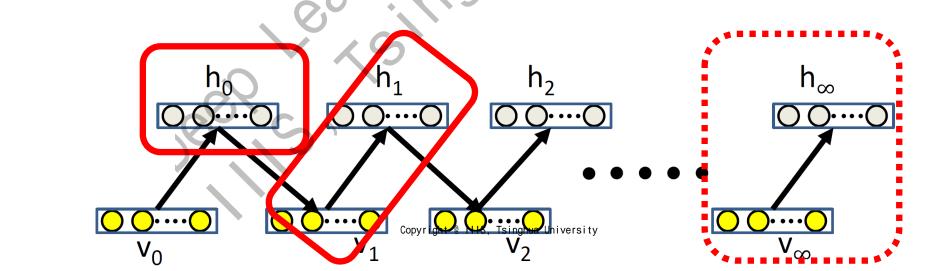
- We can starting sampling with a given v_0
 - Raising the neighborhood of the desired patterns will be sufficient



76

3/8

- Maximum Likelihood Estimate $\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{v \in P} v_{0_i} h_{0_j} - \frac{1}{M} \sum_{v \infty_i} v_{\infty_i} h_{\infty_j}$
 - Directly run Gibbs sampling from v_0 for 3 steps will be sufficient!

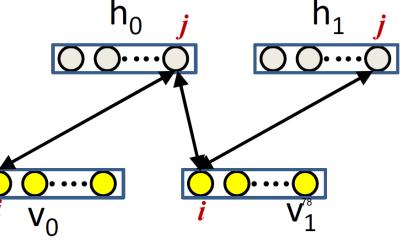


Restricted Boltzmann Machine

• Maximum Likelihood Estimate

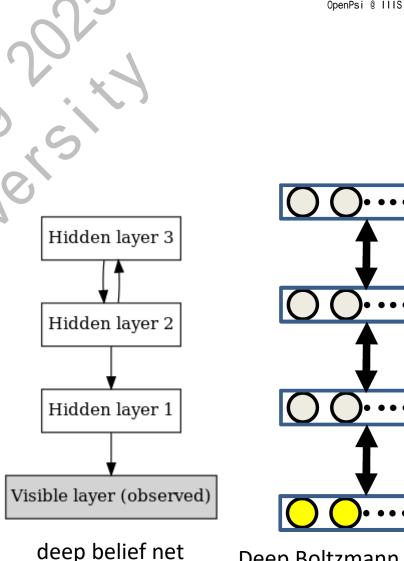
$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P} \sum_{v \in P} v_{0i} h_{0j} - v_{1i} h_{1j}$$

- Only 3 Gibbs sampling steps are needed!
- We can also extend (R)BMs to to continuous values!
 - If we can explicitly sample from $P(y_i|y_{j\neq i})$
 - Exponential family! (FYI 🙂)
 - "Exponential Family Harmoniums with an Application to Information Retrieval", Welling et al., 2004

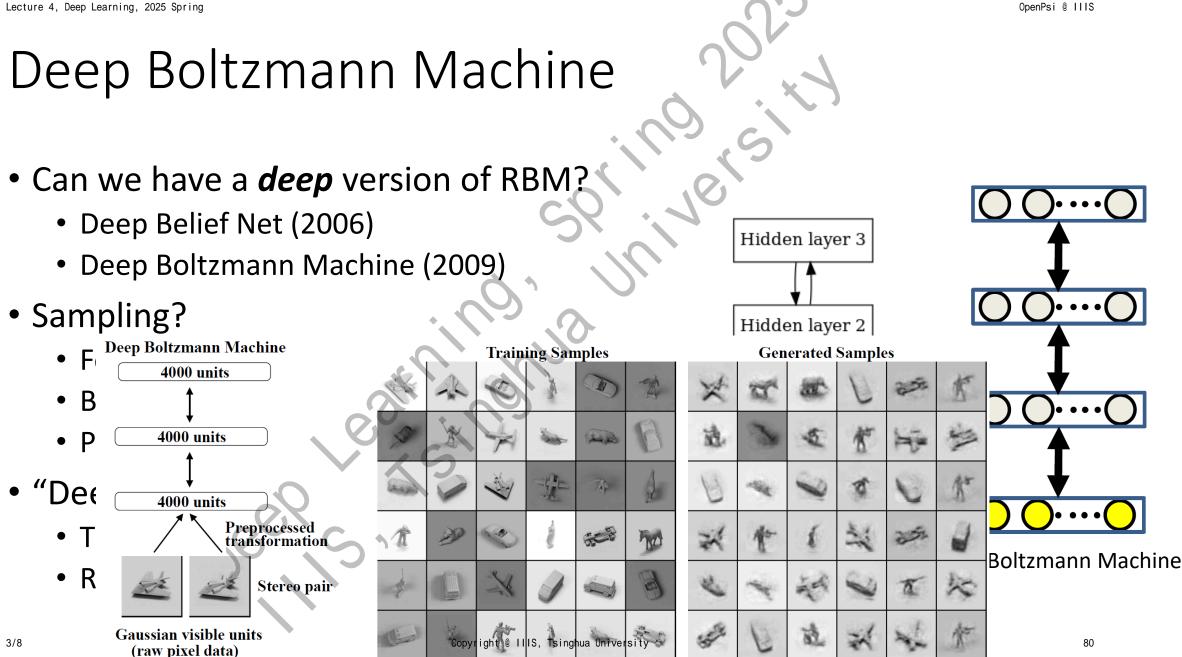


Deep Boltzmann Machine

- Can we have a *deep* version of RBM?
 - Deep Belief Net (2006)
 - Deep Boltzmann Machine (2009)
- Sampling?
 - Forward pass: bottom-up
 - Backward pass: top-down
 - Practical Trick: Layer-by-layer pretraining
- "Deep Boltzmann Machine", AISTATS 2009
 - The very first deep generative model
 - Ruslan Salakhutdinov & Geoffrey Hinton



Lecture 4, Deep Learning, 2025 Spring



Lecture 4, Deep Learning, 2025 Spring obel Prize in Physics 2024

© Nobel Prize Outreach. Photo: Nanaka Adachi John J. Hopfield

Prize share: 1/2

3/8

© Nobel Prize Outreach. Photo: Clément Morin

Prize share: 1/2

Today's Lecture: Energy-Based Models

- A particularly flexible and general form of generative model
- Part 1: Hopfield Network
 - The simplest model that can memorize and generate patterns
- Part 2: Boltzmann Machine
 - The first deep generative model
- Part 3: General Energy-Based Models & Sampling Methods

Energy-Based Model

- Goal of generative model
 - A probability distribution of "patterns" P(x)
- Requirement

 - $P(x) \ge 0$ (non-negative) $\int_x P(x) dx = 1$ (sum to 1)
- Energy-Based Model
 - Energy function: $E(x; \theta)$ parameterized by θ
 - $P(x) = \frac{1}{z} \exp(-E(x;\theta))$
 - $Z = \int_{x} \exp(-E(x;\theta)) dx$ partition function

Why use exp() function? e.g. |x| or $|x|^2$

Energy-Based Model

• A particular class of density function

$$P(x) = \frac{1}{Z} \exp(-E(x;\theta))$$

• Pros

- Common in statistical physics
- Compatible with log-probability measure to capture large variations
- Exponential family (e.g., Gaussian)
- Extremely flexible, i.e., use any E(x) you like (e.g., any $f(x): \mathbb{R}^d \to \mathbb{R}$, even CNNs)
- Cons
 - Non-trivial to sample and train due to the partition function ${\cal Z}$

Energy-Based Model: Training ingreit

• A particular class of density function

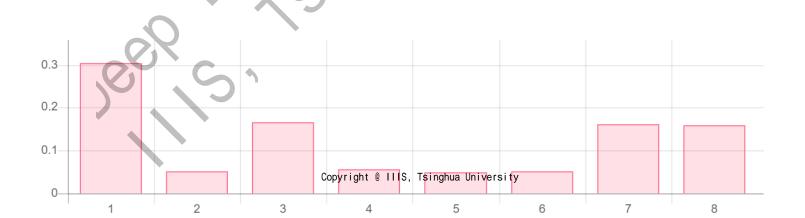
$$P(x) = \frac{1}{Z} \exp(-E(x;\theta))$$

- Maximum Likelihood Training
 - $L(\theta) = \log P(x) = -E(x; \theta) \log Z(\theta)$
 - Monte-Carlo estimates for partition function $Z(\theta)$
- Contrastive Divergence Algorithm
 - $\nabla_{\theta} L(\theta) \approx \nabla_{\theta} \left(-E(x_{train}; \theta) + E(x_{sample}; \theta) \right)$
 - Generating samples is the foundation for both training and generation!
- How to sample from an general energy-based model?
 - Or in general: sample from an arbitrary distribution p(x)

3/8

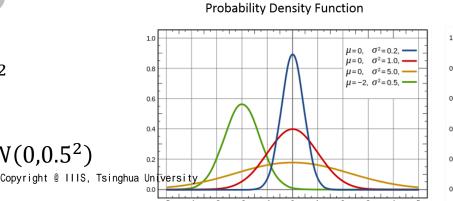
Sampling Methods

- Goal: sampling from P(x)
 - Assume we have a valid probability measure
 - P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)
- Let's start from an easy example
 - Categorical distribution?
 - Solution: uniform sampling, find the category with cumulative density
 - The mapping from CDF to value is called Inverse distribution function (quantile function)

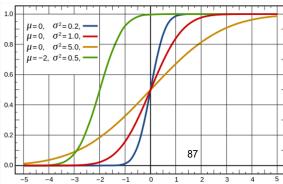


86

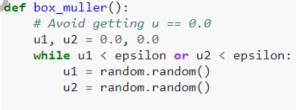
- Goal: sampling from P(x)
- r I I P. FSI • Assume we have a valid probability measure
 - P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)
- Let's start from an easy example
 - Categorical distribution
 - Gaussian distribution?
 - No closed-form CDF!
 - Central-limit theorem
 - Sample $X_i \sim Beroulli(0.5)$
 - $E[X_i] = 0.5; Var[X_i] = 0.5^2$
 - $S_N = \frac{1}{N} \sum_{i=1}^N X_i$
 - As $N \to \infty$, $\sqrt{N}(S_N 0.5) \sim N(0, 0.5^2)$



Cumulative Density Function



- Goal: sampling from P(x)
 - Assume we have a valid probability measure
 - P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)
- Let's start from an easy example
 - Categorical distribution
 - Gaussian distribution?
 - No closed-form CDF!
 - Central-limit theorem
 - Box–Muller transform
 - Most practical method (FYI)
 - Uniform \rightarrow Normal
 - Polar form transformation

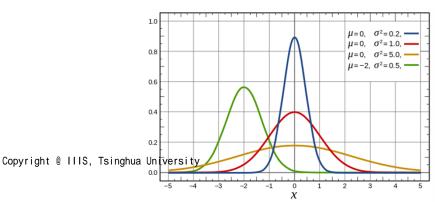


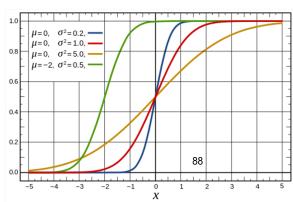
G

```
n1 = math.sqrt(-2 * math.log(u1)) * math.cos(2 * math.pi * u2)
n2 = math.sqrt(-2 * math.log(u1)) * math.sin(2 * math.pi * u2)
return n1, n2
```

Probability Density Function

Cumulative Density Function





- Goal: sampling from P(x)
 - Assume we have a valid probability measure
 - P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)
- Let's start from an easy example
 - Categorical distribution
 - Gaussian distribution?
 - No closed-form CDF!
 - Central-limit theorem
 - Box–Muller transform
 - General case $x \sim N(\mu, \sigma^2)$
 - High-dimensional case $x \sim N(\mu, \Sigma)$
 - $z \sim N(0, I)$

3/8

```
• x = \Sigma z + \mu
```

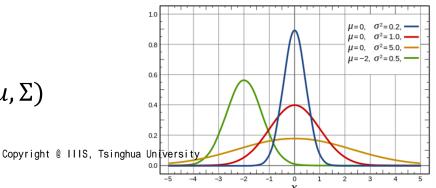
```
def box_muller():
    # Avoid getting u == 0.0
    u1, u2 = 0.0, 0.0
    while u1 < epsilon or u2 < epsilon:
        u1 = random.random()
        u2 = random.random()</pre>
```

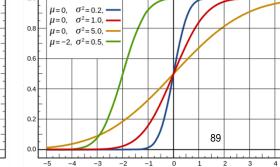
Ś

```
n1 = math.sqrt(-2 * math.log(u1)) * math.cos(2 * math.pi * u2)
n2 = math.sqrt(-2 * math.log(u1)) * math.sin(2 * math.pi * u2)
return n1, n2
```

Probability Density Function

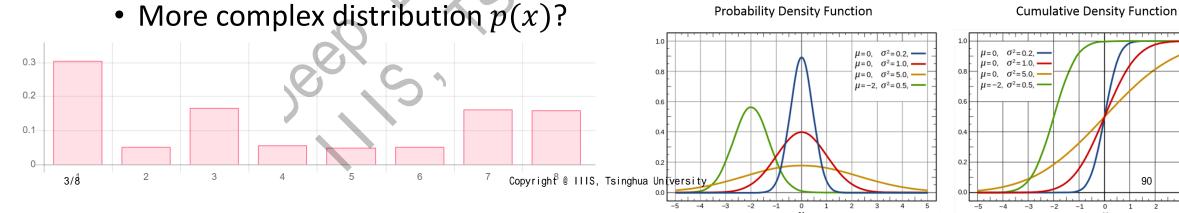
Cumulative Density Function

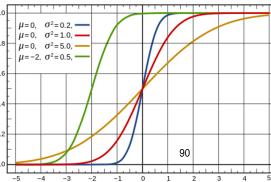




- Goal: sampling from P(x)
- .1.8 • Assume we have a valid probability measure
 - P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)
- Let's start from an easy example
 - Categorical distribution
 - Gaussian distribution
 - Idea: (1) use "easy" distributions to draw sample & (2) apply mathematical transform

.c





- Goal: sampling from p(x)
 - No CDF or nice mathematical property available
- Idea: weighted samples
 - sample from "easy" distribution q(x) (e.g., uniform)
 - Use p(x)/q(x) as the weight for the sample
- Importance Sampling
 - q(x) proposal distribution
 - $\frac{p(x)}{q(x)}$ importance weight
 - $\operatorname{E}_{x \sim p}[f(x)] = \operatorname{E}_{x \sim q}\left[\frac{p(x)}{q(x)}f(x)\right]$

10% 20%

Importance Sampling

-2

density function

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Probability density function (A.U.

20%

30%

Original density function

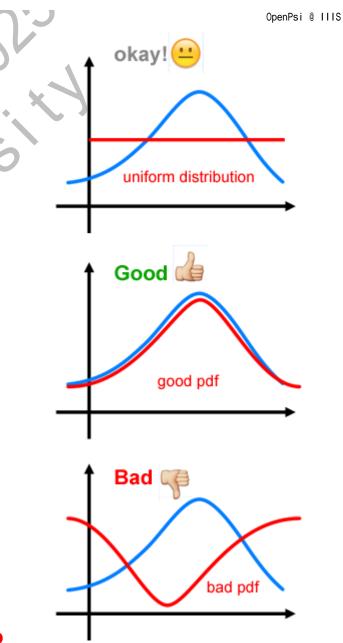
491

2

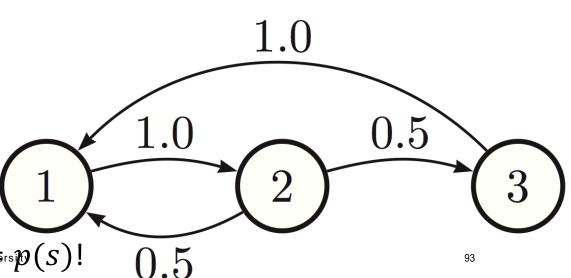
 σ_{dVt} (A.U.)

- Goal: sampling from p(x)
 - No CDF or nice mathematical property available
- Idea: weighted samples
 - sample from "easy" distribution q(x) (e.g., uniform)
 - Use p(x)/q(x) as the weight
- Importance Sampling
 - q(x) proposal distribution
 - How to choose q(x)???
 - q(x) needs to similar to p(x)
 - Your homework 😊

What if we don't have a universally good proposal?



- Markov Chain
 - A state space S, a transition probability $P(s_j | s_i) = T_{ij}$
 - T is the transition matrix
 - We also use $T(s_i \rightarrow s_j)$ to denote T_{ij}
- A Markov Chain has a stationary distribution with a proper T
 - Current distribution over states π_t
 - Single step transition $\pi_{t+1} = T\pi_t$
 - Stationary distribution $\pi = T^{\infty}\pi_0$
- Sampling is easy!
- Goal: construct a Markov Chain
- With a desired stationary distribution p(s)!



- How to ensure π is a stationary distribution of a Markov Chain?
 - Detailed Balance (sufficient condition) $\pi(s)T(s \rightarrow s') = \pi(s')T$

 $\rightarrow s)$ (5

- How to ensure π is a stationary distribution of a Markov Chain?
 - Detailed Balance (sufficient condition) $\pi(s)T(s \to s') = \pi(s')T(s' \to s)$
 - Design a Markov chain satisfying detailed balance for desired density p(s)!

- How to ensure π is a stationary distribution of a Markov Chain?
 - Detailed Balance (sufficient condition) $\pi(s)T(s \rightarrow s') = \pi(s')T(s' \rightarrow s)$
 - Design a Markov chain satisfying detailed balance for desired density p(s)!
- How to ensure a unique stationary distribution exist?
 - The Markov chain is ergodic (遍历性) ! min min $\frac{T(z \to z')}{T(z \to z')} = \delta > 0$

Intuitively: you can visit any desired state with positive probability from any state

• Examples:

$$\pi(z') = 0$$

$$T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{\rm se}$$

Metropolis Hastings Algorithm

- Construct a valid Markov Chain $T(s' \rightarrow s)$ for distribution p(s)
 - Detailed balance: $p(s)T(s \rightarrow s') = p(s')T(s' \rightarrow s)$
 - Ergodicity
- Metropolis Hastings Algorithm
 - A proposal distribution q(s'|s) to produce next state s' based on s
 - Draw $s' \sim q(s'|s)$
 - $\alpha = \min\left(1, \frac{p(s')q(s' \rightarrow s)}{p(s)q(s \rightarrow s')}\right)$ ($q(s \rightarrow s')$ to denotes q(s'|s) for simplicity)
 - Transition to s' (accept) with probability α (acceptance ratio);
 - O.w., stays at s (reject)
- MH constructs a valid Markov chain with a proper proposal q!
- ^{3/8} Homework ☺

- Choice of $q(s \rightarrow s')$
 - Random proposal $q(s \rightarrow s') = s + \text{noise}$ (i.e., Gaussian/Uniform Noise)
- Acceptance ratio for $s \rightarrow s'$

•
$$\alpha(s \to s') = \min\left(1, \frac{p(s')q(s' \to s)}{p(s)q(s \to s')}\right) = \min\left(1, \frac{p(s')}{p(s)}\right)$$

- MH sampling for the energy-based model $p(s) = \frac{1}{z} \exp(-E(s))$ Random initialize s^0

 - $s' \leftarrow q(s \rightarrow s')$
 - Transition to s' with probability $\alpha(s \rightarrow s')$;
 - O.w., stays at s
 - Repeat

98

Metropolis Hastings Algorithm: Example

- Choice of $q(s \rightarrow s')$
 - Random proposal $q(s \rightarrow s') = s + \text{noise}$ (i.e., Gaussian/Uniform Noise)
- Acceptance ratio for $s \rightarrow s'$

•
$$\alpha(s \to s') = \min\left(1, \frac{p(s')q(s' \to s)}{p(s)q(s \to s')}\right) = \min\left(1, \frac{p(s')}{p(s)}\right)$$

- MH sampling for the energy-based model $p(s) = \frac{1}{z} \exp(-E(s))$ Random initialize s^0

 - $s' \leftarrow s + \text{noise}$
 - Transition to s' with probability $\alpha(s \rightarrow s')$;
 - O.w., stays at s
 - Repeat

Metropolis Hastings Algorithm: Example

- Choice of $q(s \rightarrow s')$
 - Random proposal $q(s \rightarrow s') = s + \text{noise}$ (i.e., Gaussian/Uniform Noise)
- Acceptance ratio for $s \rightarrow s'$

•
$$\alpha(s \to s') = \min\left(1, \frac{p(s')q(s' \to s)}{p(s)q(s \to s')}\right) = \min\left(1, \frac{p(s')}{p(s)}\right)$$

- MH sampling for the energy-based model $p(s) = \frac{1}{z} \exp(-E(s))$ Random initialize s^0

 - $s' \leftarrow s + \text{noise}$
 - Transition to s' with probability $\min\left(1, \frac{p(s')}{n(s)}\right)$;

No partition function involved!

- O.w., stays at s
- Repeat 3/8

Metropolis Hastings Algorithm: Example

- Choice of $q(s \rightarrow s')$
- Choice of $q(s \rightarrow s')$ Random proposal $q(s \rightarrow s') = s + \text{noise}$ (i.e., Gaussian/Uniform Noise)
- Acceptance ratio for $s \rightarrow s'$

•
$$\alpha(s \to s') = \min\left(1, \frac{p(s')q(s' \to s)}{p(s)q(s \to s')}\right) = \min\left(1, \frac{p(s')}{p(s)}\right)$$

- MH sampling for the energy-based model $p(s) = \frac{1}{z} \exp(-E(s))$ Random initialize s^0

 - For each iteration t
 - $s' \leftarrow s^t + \text{noise}$
 - If $E(s') < E(s^t)$; then accept $s^{t+1} \leftarrow s'$
 - Else accept $s^{t+1} \leftarrow s'$ with probability $\exp(E(s^t) E(s'))$
- 3/8 Repeat

Metropolis Hastings Algorithm

- The simplest way to construct a valid Markov chain
 - Flexible, simple and general
 - Quiz: proposal q in MH v.s. Importance Sampling
 - A: q(s'|s) v.s. q(s); in MH, q generates local samples; in IS, q outputs "blind" guesses
- Issues
 - Curse of dimensionality: samples a completely new state
 - Acceptance ratio: what if acceptance rate is low?

Metropolis Hastings Algorithm

- The simplest way to construct a valid Markov chain
 - Flexible, simple and general
 - Quiz: proposal q in MH v.s. Importance Sampling
 - A: q(s'|s) v.s. q(s); in MH, q generates local samples; in IS, q outputs "blind" guesses
- Issues
 - Curse of dimensionality: samples a completely new state
 - Acceptance ratio: what if acceptance rate is low?
- Can we design a proposal distribution $q(s \rightarrow s')$ such that it always gets accepted?

Gibbs Sampling

- Gibbs sampling
 - $s = (s_0, s_1, \dots, s_N)$, we construct a coordinate-wise $q(s_i \rightarrow s'_i)$
 - $q(s_i \rightarrow s'_i) = p(s'_i | s_{j \neq i})$ (conditional distribution)
- Dimensionality
 - Sample a single coordinate per step.
- Gibbs sampling always get accepted!
 - Acceptance ratio is always 1, $\alpha(s_i \rightarrow s'_i) = 1$ Prove it in your homework \bigcirc
- Assumption

3/8

- An easy to sample conditional distribution
 - Conjugate Prior and Exponential Family (<u>https://en.wikipedia.org/wiki/Conjugate_prior</u>)
- What if no closed-form posterior?
 - Learn a neural proposal to approximate the true posterior! \odot
- (meta-learning MCMC proposals, Wang, Wu, et al NIPS2018)

- What we have learned so far ...
 - Importance Sampling
 - Simplest solution by any proposal distribution
 - Metropolis-Hastings algorithm
 - Good local proposal \rightarrow high acceptance ratio
 - Gibbs sampling
 - Posterior is easy-to-sample
 - The "default" method for machine learning among 2002~2012
- General Issues for MCMC methods
 - Slow convergence due to sampling (recap: SGD v.s. GD)
 - Can we use gradient information for MCMC?
 - Energy function is differentiable!

- MCMC with Langevin dynamics
 - "Bayesian learning via stochastic gradient langevin dynamics"
 - ICML 2011, Max Welling& Yee Whye The (ICML 2021 test-of-time award)
 - Given N data $X_1, ..., X_N$, define $p(\theta \rightarrow \theta')$ by

$$\theta' \leftarrow \theta + \frac{\epsilon_t}{2} \left(\nabla_{\theta} \log p(\theta) + \sum_i \nabla_{\theta} \log P(x_i | \theta) \right) + N(0, \epsilon_t I)$$

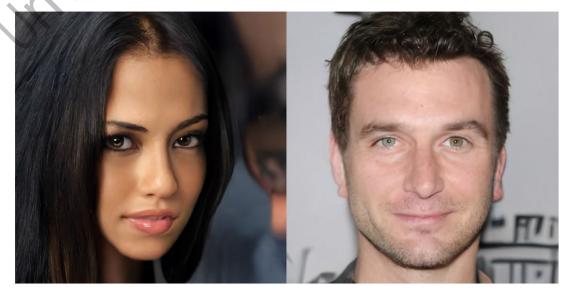
- Condition for a valid Markov Chain
 - $\sum_t \epsilon_t = \infty$ and $\sum_t \epsilon_t^2 < \infty$
 - Interpretation
 - (stochastic) gradient descent first (∇_{θ} is large); MCMC around local minimum ($\nabla_{\theta} \approx 0$)
 - No need of MH acceptance rule
- Additional Reading:
 - Hamiltonian Monte Carlo (SGD with momentum): https://arxiv.org/pdf/1701.02434.pdf
- 3/8 https://arogozhnikov.github.io/2016/12/19/markov_schaim_monte_carlo.html

Summary

- Hopfield Network
 - The first generative neural network^C
 - Undirected complete graph
- Boltzmann Machine
 - A probabilistic interpretation of Hopfield Network
 - The first deep generative model
- Energy-Based
 - Extremely flexible and powerful, designed to be multi-modal
 - Hard to sample and learn
 - Sampling is the core challenge!!

What's Next: Non-Sampling Methods

- Approximate Bayesian Inference
 - Variational Inference (next lecture ③)
 - Learn an parameterized distribution to approximate the true posterior
- Design a model from which we can easily draw sample!
 - Lectures 6 & 7a
- Modern energy-based models
 - Scoring matching
- ^{3/8} Lecture 7b



Song et. al., 2021 OpenAI Blog: <u>https://openai.com/blog/energy-based-models/</u>

Thanks!

S arning