# Deep Learning lecture 4 Energy-Based Model Yi Wu, IIIS Spring 2025 Mar-10

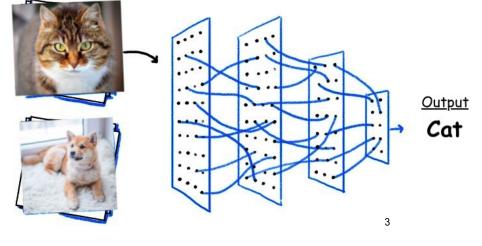
### Logistics

- Coding Project 2 due in 1 week
  - Use local compute for coding & Colab for testing
  - Cloud for long-term training
  - Any questions can be posted in Dingding channel
  - Be aware of your model size and computation (flops)!
  - Check out those famous models and works!



### Story So Far

- History
  - Lecture 1
    - first neural network (1943) to recent advances in deep learning
- Supervised Learning (Classification)
  - Lecture 2
    - MLP and basic components; Backpropagation
  - Lecture 3
    - Algorithms, Tricks and Architecture
- Discriminative Model
  - P(y|X)
  - Labeled data;  $X \rightarrow y$





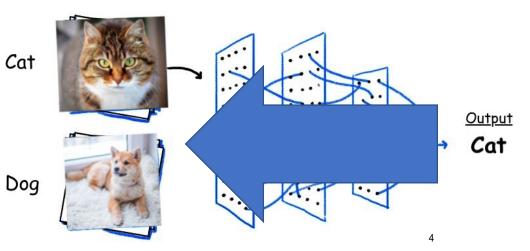
Cat

Dog

#### Afterwards

- What if we want to generate *X*?
  - E.g., Ask the neural network to generate a cat!
- Generative Model
  - P(X, y) = P(y) \* P(X|y)
  - Or just P(X)
- Lecture 4~7
  - Deep Generative Models
  - Different approaches to model P(X)

3/8



# Today's Lecture: Energy-Based Models

- A particularly flexible and general form of generative model
- Part 1: Hopfield Network
  - The simplest model that can memorize and generate patterns
- Part 2: Boltzmann Machine
  - The first deep generative model
- Part 3: General Energy-Based Models & Sampling Methods

# Today's Lecture: Energy-Based Models

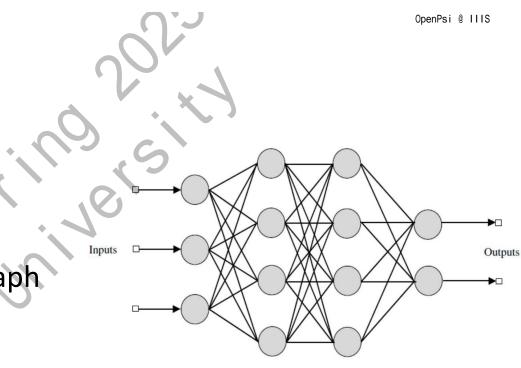
- A particularly flexible and general form of generative model
- Part 1: Hopfield Network
  - The simplest model that can memorize and generate patterns
- Part 2: Boltzmann Machine
  - The first deep generative model
- Part 3: General Energy-Based Models & Sampling Methods

#### Classification

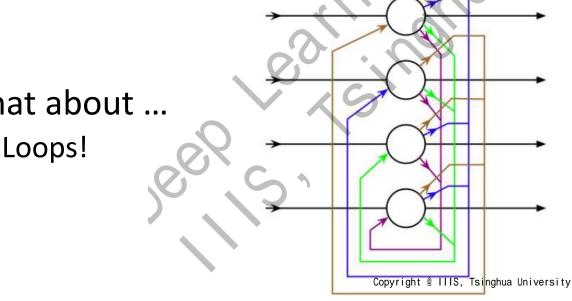
- Recap: Classification
  - Layer-by-layer computation
  - Computation Graph: Directed Acyclic Graph
  - Feedforward networks



• Loops!

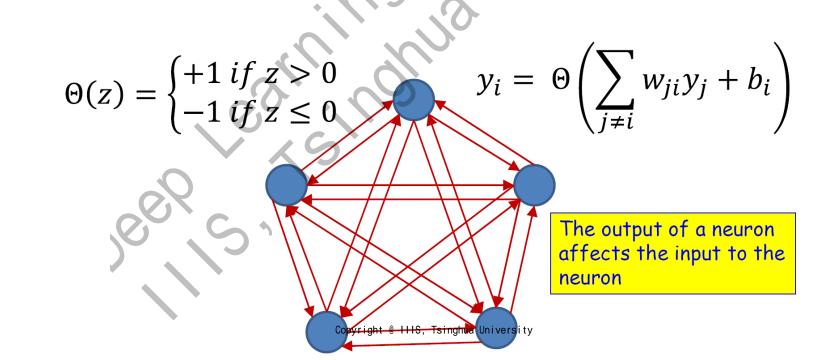


Hidden Layers Output Layer Input Layer



#### A Loopy Network

- A "fully-connected" network
  - Each neuron receives inputs from all the other neurons
  - $y_i = +1 \ or \ -1$  with hard thresholding



à

- A "fully-connected" network
  - Each neuron receives inputs from all the other neurons
  - $y_i = +1 \ or \ -1$  with hard thresholding
  - Symmetric weights

$$\Theta(z) = \begin{cases} +1 \text{ if } z > 0 \\ -1 \text{ if } z \le 0 \end{cases} \qquad y_i = \Theta\left(\sum_{j \neq i} w_{ji}y_j + b_i\right) \\ \text{A symmetric network:} \\ w_{ij} = w_{ji} \end{cases}$$

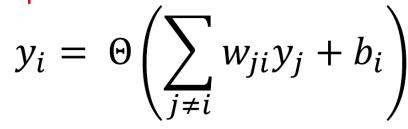
9

- A Hopfield Network may not be stable!
  - At each time each neuron receives a "field"  $z_i = \sum_{j \neq i} w_{ji} y_j + b_i$
  - If the sign of neuron matches the sign of the field, it flips

$$y_i \leftarrow -y_i \text{ if } y_i \left( \sum_{i \neq i} w_{ji} y_j + b_i \right) < 0$$

Copyright @ IIIS, Tsinghua

• This can further cause other neurons to flip!



$$\Theta(z)_{\text{University}} = \begin{cases} +1 \text{ if } z > 0\\ -1 \text{ if } z \le 0 \end{cases}$$

10

- Neurons flip if its sign does not match its local "field"
  - $y_i \leftarrow -y_i$  if  $y_i (\sum_{j \neq i} w_{ji} y_j + b_i) < 0$  for all neurons

0 IIIS, Tsinghua 🗤

- Repeat until no neuron flips
- Will this process converge?

 $\Theta(z) = \begin{cases} +1 \text{ if } z > 0\\ -1 \text{ if } z \le 0 \end{cases}$ 

$$y_i = \Theta\left(\sum_{j \neq i} w_{ji} y_j + b_i\right)$$

11

OpenPsi @ IIIS

3/8

- Let  $y_i^-$  denote the value of  $y_i$  before a "flip"
- Let  $y_i^+$  denote the value of  $y_i$  after a "flip"
- If  $y_i^-(\sum_{j\neq i} w_{ji}y_j + b_i) \ge 0$ , nothing happen  $y_i^+ \left( \sum_{j \neq i} w_{ji} y_j + b_i \right) - y_i^- \left( \sum_{j \neq i} w_{ji} y_j + b_i \right) = 0$  $y_i = \Theta\left(\sum_{i \neq i} w_{ji} y_j + b_i\right)$ Copyright @ IIIS, Tsing us Up versity  $\begin{cases} +1 \ if \ z > 0 \\ -1 \ if \ z < 0 \end{cases}$ 3/8

Ġ

- Let  $y_i^-$  denote the value of  $y_i$  before a "flip" Let  $y_i^+$  denote the value of  $y_i$  after a "flip" If  $y_i^-(\sum_{j \neq i} w_{ji}y_j + b_i) \ge 0$ , nothing happen

• If 
$$y_i^-(\sum_{j \neq i} w_{ji}y_j + b_i) < 0, y_i^+ = -y_i^-$$
  
 $y_i^+(\sum_{j \neq i} w_{ji}y_j + b_i) - y_i^-(\sum_{j \neq i} w_{ji}y_j + b_i) = 2y_i^+(\sum_{j \neq i} w_{ji}y_j + b_i)$   
 $y_i = \Theta\left(\sum_{j \neq i} w_{ji}y_j + b_i\right)$   
 $y_i = \Theta\left(\sum_{j \neq i} w_{ji}y_j + b_i\right)$   
Copyright & IIIS, Thing Zup versity  $\begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z \leq 0 \end{cases}$ 

à

13

- Let  $y_i^-$  denote the value of  $y_i$  before a "flip"
- Let  $y_i^+$  denote the value of  $y_i$  after a "flip"
- If  $y_i^-(\sum_{j\neq i} w_{ji}y_j + b_i) \ge 0$ , nothing happen

• If 
$$y_i^- (\sum_{j \neq i} w_{ji}y_j + b_i) < 0, y_i^+ = -y_i^-$$
  
 $y_i^+ (\sum_{j \neq i} w_{ji}y_j + b_i) - y_i^- (\sum_{j \neq i} w_{ji}y_j + b_i) = 2y_i^+ (\sum_{j \neq i} w_{ji}y_j + b_i)$  Positive!  
 $y_i = \Theta \left(\sum_{j \neq i} w_{ji}y_j + b_i\right)$   
 $y_i = \Theta \left(\sum_{j \neq i} w_{ji}y_j + b_i\right)$   
3/8

*Every flip increases* 

 $2y_i(\sum_{j\neq i} w_{ji} y_j + b_i)$ 

• Consider the sum over every pair of neurons (assume  $w_{ii} = 0$ )

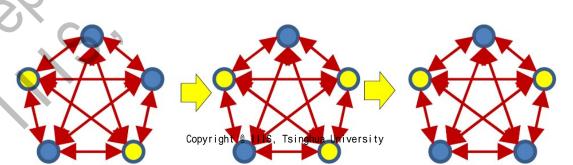
$$D(y_1, \dots, y_N) = \sum_{i \le i} y_i w_{ij} y_j + y_i b_i$$

• Any flip that changes  $y_i^-$  to  $y_i^+$  increases  $D(y_1, ..., y_N)$ 

$$\Delta D = D(\dots, y_i^+, \dots) - D(\dots, y_i^-, \dots) = 2y_i^+ \left(\sum_{i=1}^{n} w_{ji}y_j + b_i\right) > 0$$

\j≠i

• Convergence?



15

• D is upper-bounded (we only change  $y_i$ )

$$D(y_1, \dots, y_N) = \sum_{i < j} w_{ij} y_i y_j + \sum_i b_i y_i \le \sum_{i < j} |w_{ij}| + \sum_i |b_i|$$

5

•  $\Delta D$  is lower-bounded

$$\Delta D_{\min} = \min_{i, \{y_j\}} 2 \left| \sum_j w_{ij} y_j + b_i \right| > 0$$

- {y<sub>i</sub>} converges with a finite number of iterations!
  {y<sub>i</sub>}: state Copvr

3/8

### Hopfield Network

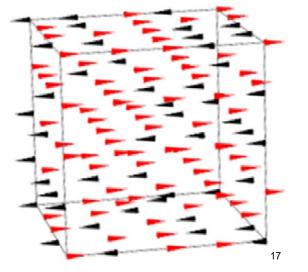
• The *Energy* of Hopfield Network

$$E = -D = -\sum_{i \le i} w_{ij} y_i y_j - \sum_i b_i y_i$$

- The evolution of Hopfield network always decreases its energy!
- The concept of *Energy* 
  - Magnetic dipoles in a disordered magnetic material
  - Each dipole tries to align itself to the local field
  - Field at a particular dipole  $f(p_i)$ ,  $p_i$  is the position of  $x_i$

$$f(p_i) = \sum_{j \neq i} J_j x_j + b_i$$

Ising model of magnetic materials (Ising and Lenz, 1924)



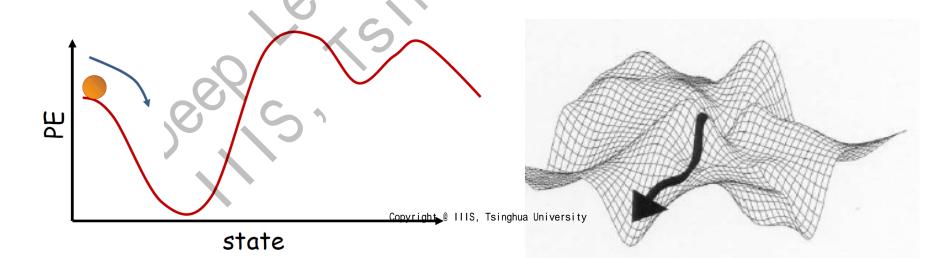
3/8

# Hopfield Network: Pattern Generation

• The Hopfield network (simplified)

$$E = -\sum_{i < j} w_{ij} y_i y_j$$

- Network evolution arrives at a local optimum in the energy contour
  - Every change in the network state Y decreases the energy E
- Any small jitter from this stable state returns it to the stable state



18

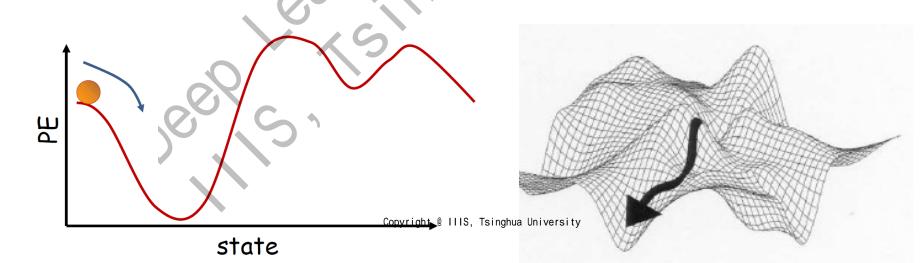
3/8

# Hopfield Network: Pattern Generation

• The Hopfield network (simplified)

$$E = -\sum_{i < i} w_{ij} y_i y_j$$

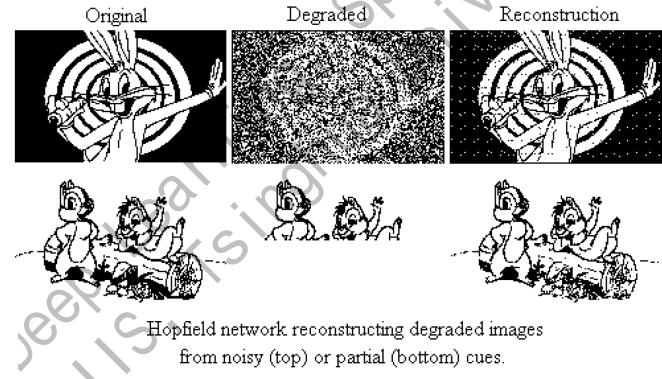
- Each local optimum state is a "stored" pattern
  - If the network is initialized close to a stored pattern, it evolves to the pattern
- Associated Memory (content addressable memory)



19

# Hopfield Network: Pattern Generation

• Image Reconstruction by Hopfield Network (1982)



• How can we store the desired patterns?

- Let's teach the network to store this image
  - N pixels  $\rightarrow N$  neurons
  - Symmetric weights  $\rightarrow \frac{1}{2}N(N-1)$  parameters to learn
    - We omit bias terms for simplicity
- Design  $\{w_{ij}\}$  such that the energy is at a local minimum for a desired pattern y
  - Hebbian Learning Rule  $w_{ij} \leftarrow y_i y_j$  (1949)
  - $E = -\sum_{i < j} w_{ij} y_i y_j = -\frac{1}{2} N(N-1) \rightarrow \text{lowest possible energy!}$





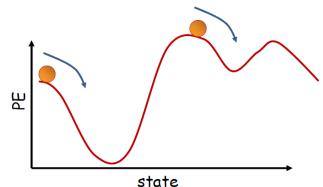


OpenPsi @ IIIS

- Let's teach the network to store this image
  - N pixels  $\rightarrow N$  neurons
  - Symmetric weights  $\rightarrow \frac{1}{2}N(N-1)$  parameters to learn
    - We omit bias terms for simplicity
- Design  $\{w_{ij}\}$  such that the energy is at a local minimum for a desired pattern y
  - Redundancy! y & y will be both stored







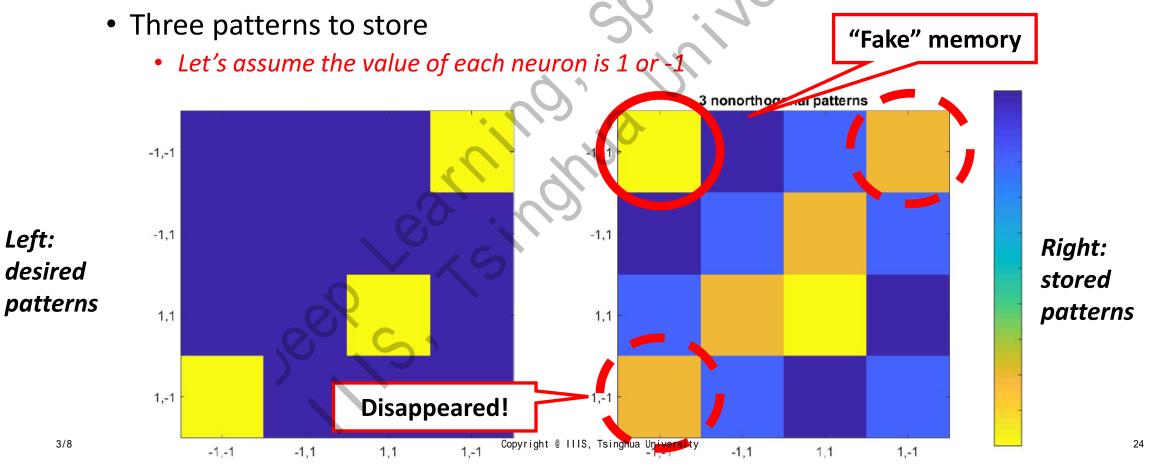


OpenPsi @ IIIS

- What if we want to store *multiple* patterns?
  - $P = \{y^p\} N_p$  patterns
  - Hebbian Learning Rule

- The issue of Hebbian Learning
  - Spurious local optima

• Example: 4-dimensional Hopfield Network with Hebbian Learning



- We want to construct a network with desired *stable* local optimum
  - A pattern can be recovered after 1-bit change
- For a specific set of K patterns, we can always build a network for which all patterns are stable provided  $K \leq N$ 
  - Mostafa and St. Jacques (1985)
  - For large N, the upper bound on K is actually  $\frac{N}{4} \log N$ 
    - McElice et. al. (1987)
  - Still possible with undesired local minimum
- How can we find the weights?
  - K patterns to be stored
  - Avoid undesired local minimum as much as we can

- Problem Formulation
  - Desired patterns  $P = \{y^p\}$
  - Energy function  $E(y) = -\frac{1}{2}y^T W y$  (we omit bias term for simplicity)
- Objective for *W* 
  - Minimize *E* for all  $y^p$
  - It should also maximize E for all non-desired patterns!

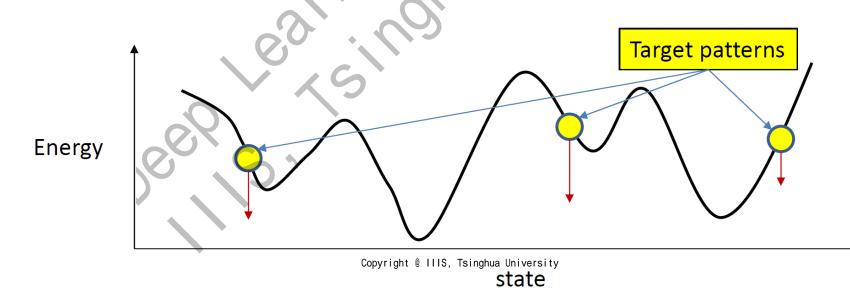
$$W = \arg\min_{W} \sum_{y \in P} E(y) - \sum_{y' \notin P} E(y')$$

# Hopfield Network: Optimization • Update rule for W $W \leftarrow W - \eta$ Energy

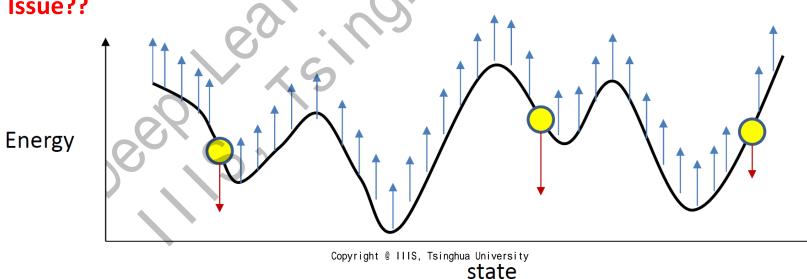
• Update rule for *W* 

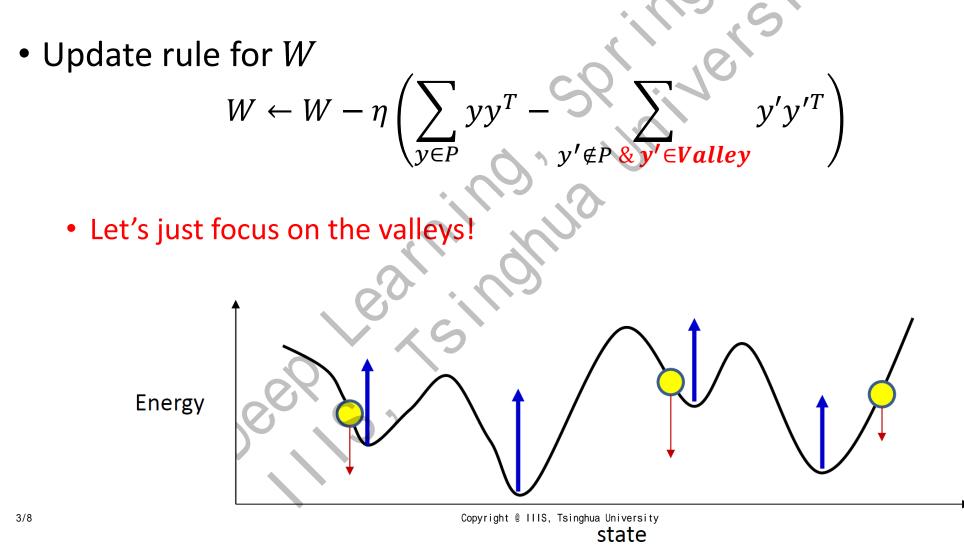


• The first term is minimizing the energy of desired patterns!



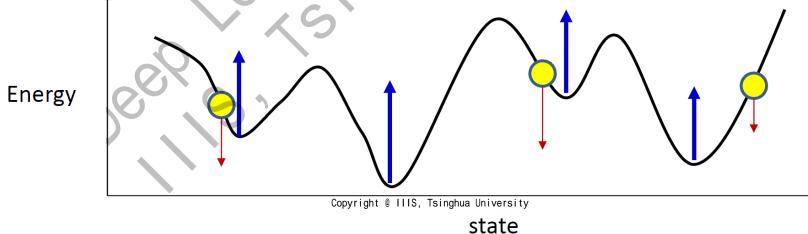
- Update rule for W  $W \leftarrow W - \eta$ 
  - The second term essentially raises all the patterns in the space
    - Issue??





31

- Update rule for W  $W \leftarrow W - \eta \left(\sum_{y \in P} yy\right)$  $' - \sum_{y' \notin P \& y' \in Valley}$ 
  - Let's just focus on the valleys!
  - But how can we find the valley •



- Update rule for W  $W \leftarrow W - \eta \left( \sum_{y \in P} yy^T - \sum_{y' \notin P \& y' \in Valley} y'y'^T - y' \notin P \& y' \in Valley} \right)$ 
  - Let's just focus on the valleys!
  - But how can we find the valleys?
  - Evolution of Hopfield Network will converge to a valley

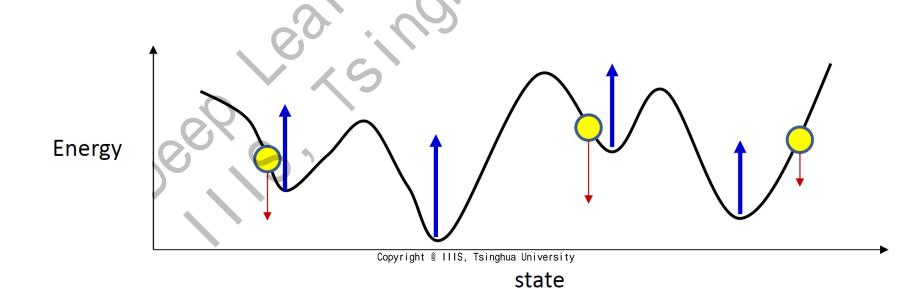
state

- Update rule for W  $W \leftarrow W - \eta \left( \sum_{y \in P} yy^T - \sum_{y' \notin P \& y' \in Valley} y'y'^T \right)$ 
  - Compute outer-products of desired patterns y
  - Randomly initialize y' for multiple times
    - Run evolution for random y' until convergence
    - Calculate outer-product of y<sup>o</sup>
  - Compute gradient and update W

- Update rule for W  $W \leftarrow W - \eta \left( \sum_{y \in P} yy^T - \sum_{y' \notin P \And y' \in Valley} y'y'^T \right)$ 
  - Compute outer-products of desired patterns y
  - Randomly initialize y' for multiple times
    - Run evolution for random y' until convergence
    - Calculate outer-product of y<sup>o</sup>
  - Compute gradient and update W
  - Valleys are NOT equivalently important...

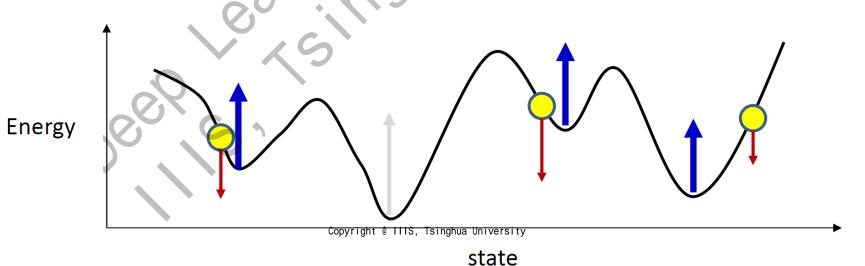
35

- Which valleys are important?
- Primary object: ensure desired pattens stable
  - We want to ensure desired patterns are in broad valleys



36

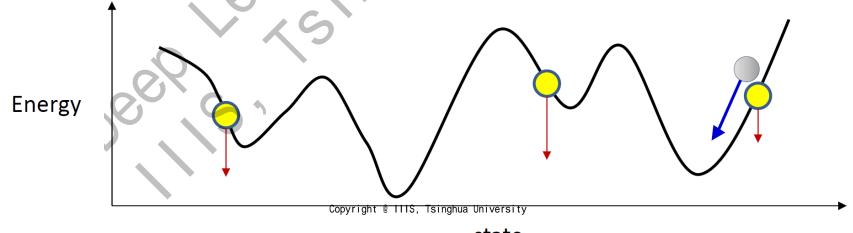
- Which valleys are important?
- Primary object: ensure desired pattens stable
  - We want to ensure desired patterns are in broad valleys
  - Spurious valleys around desired patterns are more important to eliminate



37

## Hopfield Network: Optimization

- Which valleys are important?
- Primary object: ensure desired pattens stable
  - We want to ensure desired patterns are in broad valleys
  - Spurious valleys around desired patterns are more important to eliminate
  - Evolution from desired patterns



state

## Hopfield Network: Optimization

- Update rule for W  $W \leftarrow W - \eta \left( \sum_{y \in P} yy^T - \sum_{y' \notin P \And y' \in Valley} y'y'^T \right)$ 
  - Compute outer-products of desired patterns y
  - Initialize y' by all the desired patterns
    - Run evolution for random y' until convergence
    - Calculate outer-product of y<sup>o</sup>
  - Compute gradient and update W
  - Still issues?

## Hopfield Network: Optimization

• Recap: we raise the valleys next to the desired patterns

Stutun



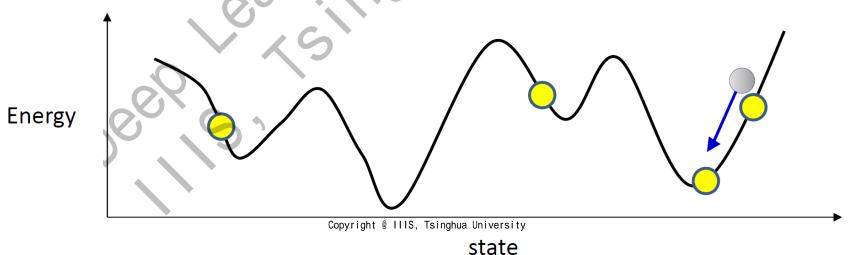


Copyright @ IIIS, Tsinghua University

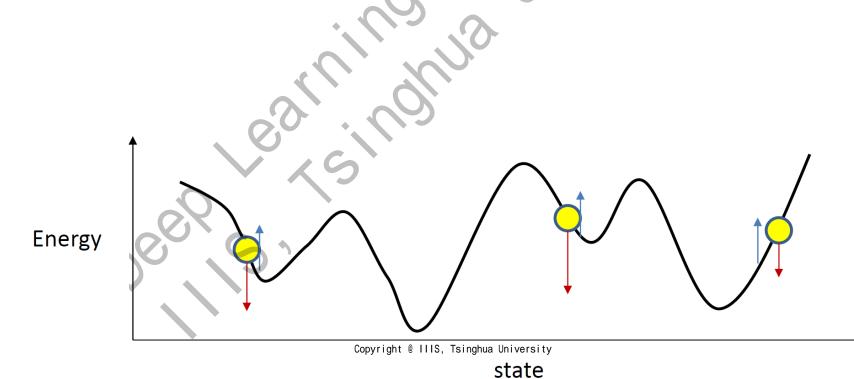
40

## Hopfield Network: Optimization

- Recap: we raise the valleys next to the desired patterns
- What if a pattern is close to the valley?
  - Naively forcing a valley to raise may hurt the learned representation
  - Particularly challenging when y are continuously valued (e.g., tanh activation)



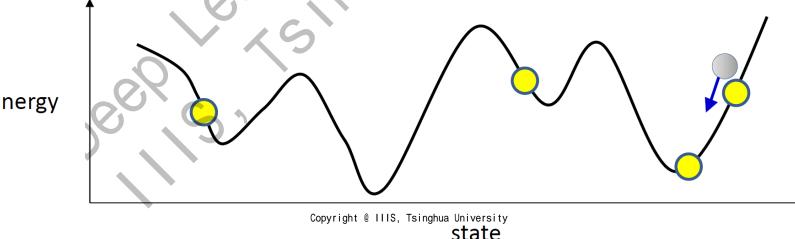
- New idea: we only raise the "neighborhood" of desired patterns!
  - It is sufficient to make each desired pattern a valley
  - Note: we want to raise the neighborhood of the decent direction



3/8

41

- New idea: we only raise the "neighborhood" of desired patterns!
  - It is sufficient to make each desired pattern a valley
  - Note: we want to raise the neighborhood of the decent direction
- Implementation
  - We initialize y' by the desired patterns
  - Only perform evolution for a few steps!



Energy

42

## Hopfield Network: SGD Optimization

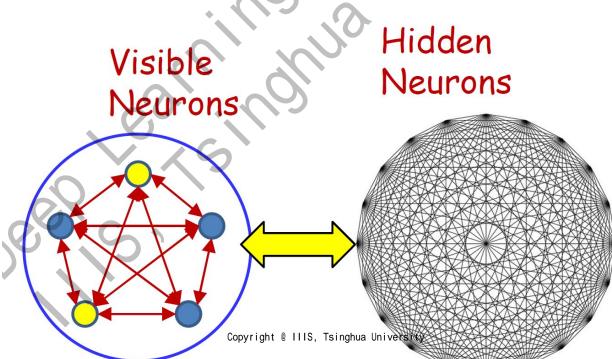
• SGD update rule for W

$$W \leftarrow W - \eta \left( \mathbf{E}_{y \in P} [y y^T] - \mathbf{E}_{y'} [y' y'^T] \right)$$

- Compute outer-products of random desired pattern y
- Initialize y' by a random desired pattern
  - Run evolution for random y' for a few timesteps (2~4)
  - Calculate outer-product of y'
- Compute gradient and update W
- In theory, O(N) patterns can be stored in the network (with undesired valleys)
  - How to store more patterns?

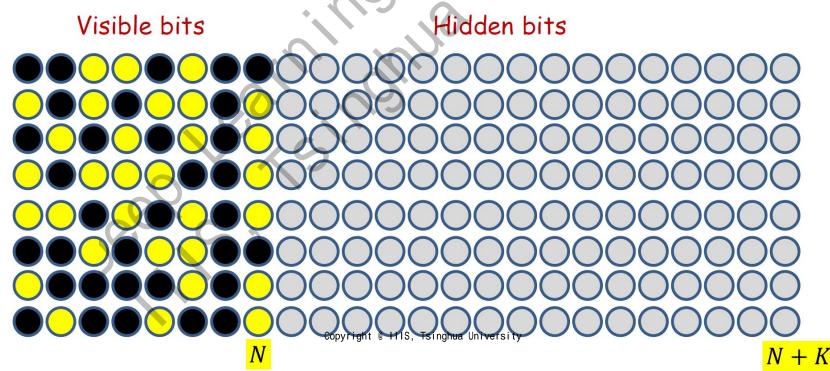
## The Expanded Network

- Idea: introduce redundant neurons to increase network capacity
- Original N neurons for patterns: visible neurons
- Additional *K* neurons: hidden neurons



### The Expanded Network

- Idea: introduce redundant neurons to increase network capacity
- Original N neurons for patterns: visible neurons
- Additional K neurons: hidden neurons



3/8

#### The Expanded Network

- 10,202:X
- N dimensional pattern  $\rightarrow N + K$  dimension
  - Q1: How can we store the patterns with *K* additional units? (random filling?)
  - Q2: How to retrieve the desired patterns? (perform evolution?)

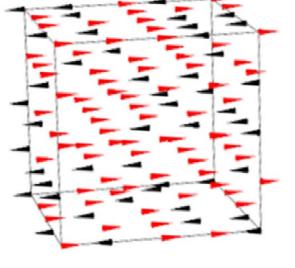
Visible bits Hidden bits We will have an elegant solution by converting a Hopfield network to a probabilistic model P(v, h)!

46

## Today's Lecture: Energy-Based Models

- A particularly flexible and general form of generative model
- Part 1: Hopfield Network
  - The simplest model that can memorize and generate patterns
- Part 2: Boltzmann Machine
  - The first deep generative model
- Part 3: General Energy-Based Models & Sampling Methods

- Recap: A thermodynamic (热力学) system
  - A probabilistic system
  - Hopfield network is a simplified deterministic version
- A thermodynamic system at temperature T
  - $P_T(S)$  the probability of the system at state S
  - $E_T(S)$  the potential energy at state S
  - $U_T$  the internal energy, the capability to do work
  - $H_T$  the entropy, internal disorder of the system
  - k Boltzmann constant
  - Free energy  $F_T = U_T kTH_T$



48

OpenPsi @ IIIS

## The Helmholtz Free Energy

- Free energy  $F_T = \sum_{S} P_T(S) E_T(S) + kT \sum_{S} P_T(S) \log P_T(S)$
- Boltzmann distribution (also known as Gibbs distribution)

$$P_T(S) = \frac{1}{Z} \exp\left(-\frac{E_T(S)}{kT}\right)$$

- Minimum Free-Energy Principle: minimize  $F_T$  w.r.t.  $P_T(S)$
- The probability distribution of states at equilibrium
- Z normalizing constant

Given an energy function  $E_T(S)$ , if we follow a proper physical evolution process, the system state will converge to the Boltzmann distribution

- Let's model our Hopfield network as a thermodynamic system
  - T = k = 1 for simplicity
  - Energy

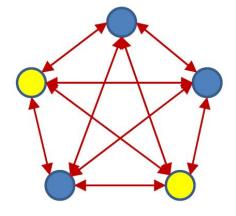
3/8

$$E(y) = -\sum_{i < j} w_{ij} y_i y_j - b_i y_i$$

Boltzmann Probability

$$P(y) = \frac{1}{Z} \exp(-E(y)) = \frac{1}{Z} \exp\left(\sum_{i < j} w_{ij} y_i y_j + b_i y_i\right)$$

- Stochastic Hopfield Network
  - P(y) models the stationary probability distribution of states y given E(y)
  - We generate patterns by sampling from P(y)

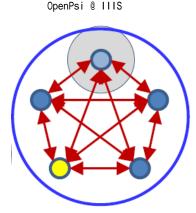


- Let's consider the "flip" operation
  - Deterministic  $\rightarrow$  probabilistic
  - Goal: change  $y_i$  to 1 with probability  $P(y_i = 1 | y_{j \neq i})$
- Assume y and y' only differ at position i and  $y'_i = -1$

• 
$$\log P(y) = -E(y) + C$$

• 
$$E(y) = -\sum_{i < j} w_{ij} y_i y_j - b_i y_i$$

• 
$$\log P(y) - \log P(y') = E(y') - E(y) = -\sum_{j} w_{ij} y_j - 2b_i$$
  
 $\log \frac{P(y)}{P(y')} = \log \frac{P(y_i = 1|y_{j\neq i})P(y_{j\neq i})}{P(y'_i = -1|y'_{j\neq i})P(y'_{j\neq i})} = \log \frac{P(y_i = 1|y_{j\neq i})}{1 - P(y_i = 1|y_{j\neq i})} = -\sum_{j} w_{ij} y_j - 2b_i$ 



- Let's consider the "flip" operation
  - Deterministic  $\rightarrow$  probabilistic
  - Goal: change  $y_i$  to 1 with probability  $P(y_i = 1 | y_{j \neq i})$
- Assume y and y' only differ at position i and  $y'_i = -1$

• 
$$\log P(y) = -E(y) + C$$

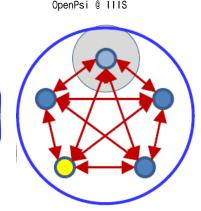
• 
$$E(y) = -\sum_{i < j} w_{ij} y_i y_j - b_i y_i$$

$$\log P(y) - \log P(y') = E(y') - E(y) = -\sum_{j} w_{ij} y_j - 2b_i$$
  
$$\log \frac{P(y)}{P(y')} = \log \frac{P(y_i = 1 | y_{j \neq i}) P(y_{j \neq i})}{P(y'_i = -1 | y'_{j \neq i}) P(y'_{j \neq i})} = \log \frac{P(y_i = 1 | y_{j \neq i})}{1 - P(y_i = 1 | y_{j \neq i})} = -\sum_{j} w_{ij} y_j - 2b_i$$

• A sigmoid conditional:  $P(y_i = 1 | y_{j \neq i}) = \frac{1}{1 + \exp(-\sum_j w_{ij} y_j - 2b_i)}$ 

This is also called Gibbs sampling (remember the name for now C)





- The whole update rule
  - Field at  $y_i: z_i = \sum_j w_{ij} y_j + 2b_i$
  - $P(y_i = 1 | y_{j \neq i}) = \frac{1}{1 + \exp(-z_i)} = \sigma(z_i)$  delta energy of flip
- Evolving the network
  - Randomly initialize y
  - Cycle over  $y_i$ , fixed other variables fixed and sample  $y_i$  according to the conditional probability

Field quantifies the

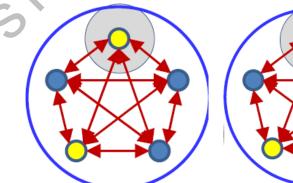
- After "convergence", we can get samples of y according to P(y)
- This sampling procedure is called Gibbs sampling
- How can we retrieve a stored pattern???
  - This is a stochastic process!

OpenPsi @ IIIS

- Network evolution
  - initialize  $y_0$
  - For  $1 \le i \le N$ ,  $y_i(t+1) \sim Bernoulli(\sigma(z_i(t)))$
  - Until convergence
- Retrieve a stored (low energy / high probability) pattern y
  - Given sequence of samples  $y_0, \dots, y_L$
  - Simply take the average of final *M* samples

$$y_i = I \left[ \frac{1}{M} \sum_{t=L-M+1}^{L} y_i(t) > 0 \right]$$

- If you want a probability instead of a single vector, you can use the frequency derived from  $\{y_{L-M+1}, ..., y_L\}$  to approximate the stationary distribution
- In many applications, we simply take  $M_{\text{interset}}$  (output  $y_L$ )



## Stochastic Hopfield Network: Annealing

- Find the state with lowest energy?
- Network evolution with temperature annealing
  - initialize  $y_0, T \leftarrow T_{\max}$
  - Repeat

3/8

- Repeat a few cycles For  $1 \le i \le N$ ,  $y_i(T) \sim Bernoulli\left(\sigma\left(\frac{1}{T}z_i(T)\right)\right)$   $y_i(\alpha T) \leftarrow y_i(T); T \leftarrow \alpha T$
- Until convergence
- Final state as the retrieved pattern
  - With temperature annealing, the system will converge to the most likely state
  - Possibly local minimum in practice, Tsinghua University



#### Boltzmann Machine

- A generative Model (simplified)
  - $E(y) = -\frac{1}{2}y^T W y$ •  $P(y) = \frac{1}{2} \exp\left(-\frac{E(y)}{T}\right)$
  - Parameter W
- It has a probability for producing any binary pattern y
  - We assume  $y_i = 0$  or 1 (or  $\pm 1$ )

$$z_i = \frac{1}{T} \sum_j w_{j,i} y_j$$

Ġ

How to learn W for desired patterns?

## Boltzmann Machine: Training

- Goal
  - Remember a set of desired patterns  $P = \{y^p \}$
  - Now we have a probability distribution P(y) with parameter W
- Objective: maximum likelihood learning (assume T = 1)
  - Probability of a particular pattern

$$P(y) = \frac{\exp\left(\frac{1}{2}y^T W y\right)}{\sum_{y'} \exp\left(\frac{1}{2}y'^T W y'\right)}$$

Maximize log-likelihood

$$L(W) = \frac{1}{N_P} \sum_{y \in P} \frac{1}{2} y^T W y - \log \sum_{\substack{y' \\ \text{Copyright @ IIIS, Tsinghua University}}} \exp\left(\frac{1}{2} y'^T W y'\right)$$

 Maximize log-likelihood  $L(W) = \frac{1}{N_P} \sum_{y \in P} \frac{1}{2} y^T W y - \log \sum_{y'} \exp\left(\frac{1}{2}\right)$  $\frac{1}{2}v'^TWy'$ • Gradient Ascent  $\nabla_{w_{ij}}L$ 

 Maximize log-likelihood  $L(W) = \frac{1}{N_{1}}$ Wy'exp log  $y \in P$ • Gradient Ascent  $\nabla_{w_{ij}}L$ •  $\nabla_{w_{ij}}L = \frac{1}{N_P} \sum_{y \in P} y_i y_j$ 

terms

60

# Boltzmann Machine: Training

• Maximize log-likelihood  

$$L(W) = \frac{1}{N_P} \sum_{y \in P} \frac{1}{2} y^T W y - \log \sum_{y'} \exp\left(\frac{1}{2} y'^T W y'\right)$$
• Gradient Ascent  $\nabla_{W_{ij}} L$   
•  $\nabla_{W_{ij}} L = \frac{1}{N_P} \sum_{y \in P} y_i y_j - \sum_{y'} \frac{\exp\left(\frac{1}{2} y'^T W y'\right)}{Z} \cdot y'_i y'_j$  Exponentially many

Copyright @ IIIS, Tsinghua University

# Boltzmann Machine: Training

• Maximize log-likelihood  

$$L(W) = \frac{1}{N_P} \sum_{y \in P} \frac{1}{2} y^T W y - \log \sum_{y'} \exp\left(\frac{1}{2} y'^T W y'\right)$$
• Gradient Ascent  $\nabla_{W_{ij}} L$   
•  $\nabla_{W_i} L = \frac{1}{2} \sum_{y \in P} y_i y_i = \sum_{w} \frac{\exp\left(\frac{1}{2} y'^T W y'\right)}{\frac{\exp\left(\frac{1}{2} y' Y' W y'\right)}$ 

- $v_{w_{ij}L} = \frac{1}{N_P} \sum_{y \in P} y_i y_j = \sum_{y'} \frac{1}{Z} \cdot y_i y_j$   $\nabla_{w_{ij}L} = \frac{1}{N_P} \sum_{y \in P} y_i y_j E_{y'} [y'_i y'_j]$  Monte-Carlo Approximation Draw a set of samples *S* for *y'* according to the probability,

• 
$$\nabla_{w_{ij}}L = \frac{1}{N_P} \sum_{y \in P} y_i y_j - \frac{1}{|S|} \sum_{y' \in S} y'_i y'_j$$

## Boltzmann Machine: Training

- Maximize log-likelihood with *M* Monte-Carlo samples  $\nabla_{w_{ij}} L(W) = \frac{1}{N_P} \sum_{y \in P} y_i y_j - \frac{1}{M} \sum_{y' \in S} y'_i y'_j$
- How to draw samples from P(y)?
  - Running the stochastic network (Gibbs sampling)
    - Randomly initialize y(0)
    - Cycle over  $y_i(t)$ , sampling according to  $P(y_i(t)|y_{j\neq i}(t))$
    - After convergence, we get a sequence of samples  $\{y(0), ..., y(L)\}$
    - Get the final M states as samples  $S = \{y(L M + 1), ..., y(L)\}$

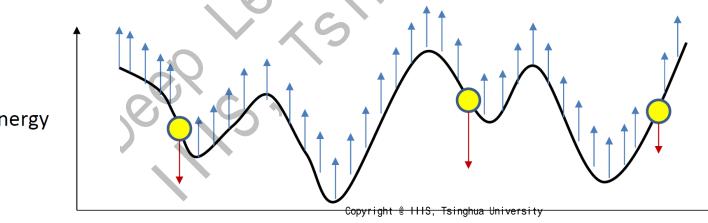
63

## Boltzmann Machine: Training

- Overall Training
  - Initialize W
  - Maximize log-likelihood with *M* Monte-Carlo samples

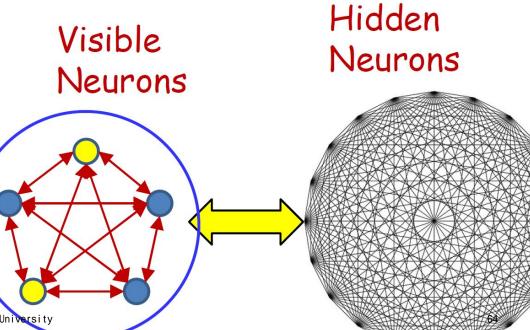
$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P} \sum_{y \in P} y_i y_j - \frac{1}{M} \sum_{y' \in S} y'_i y'_j$$

• 
$$w_{ij} \leftarrow w_{ij} + \eta \nabla_{w_{ij}} L(W)$$
 (we are maximizing likelihood)



Energy

- Let's get back to hidden neurons!
  - v visible neurons (visible patterns), h hidden neurons (latent variables)
  - y = (v, h)
- A joint probability distribution
  - P(y) = P(v,h)
  - $P(v) = \sum_{h} P(v, h)$ 
    - We only care about patterns
    - The marginal distribution!
- New objective
  - Maximize the marginal probability



• Maximum log-likelihood learning  

$$P(v) = \sum_{h} P(v,h) = \sum_{h} \frac{\exp(y^T W y)}{\sum_{y'} \exp(y'^T W y')}$$

$$L(W) = \frac{1}{|P|} \sum_{v \in P} \log\left(\sum_{h} \exp(y^T W y)\right) - \log\left(\sum_{y'} \exp(y'^T W y')\right)$$
• Gradient  $\nabla L(W)$ ?

• Maximum log-likelihood learning  

$$P(v) = \sum_{h} P(v,h) = \sum_{h} \frac{\exp(y^T W y)}{\sum_{y'} \exp(y'^T W y')}$$

$$L(W) = \frac{1}{|P|} \sum_{v \in P} \log\left(\sum_{h} \exp(y^T W y)\right) - \log\left(\sum_{y'} \exp(y'^T W y')\right)$$
• Gradient  $\nabla L(W)$ ?  
Monte-Carlo Estimate!

66

- Maximum log-likelihood learning  $P(v) = \sum_{h} P(v,h) = \sum_{h} \frac{\exp(y^T W y)}{\sum_{y'} \exp(y'^T W y')}$   $L(W) = \frac{1}{|P|} \sum_{v \in P} \log\left(\sum_{h} \exp(y^T W y)\right) - \log\left(\sum_{y'} \exp(y'^T W y')\right)$
- Gradient  $\nabla L(W)$ ?
  - The first term is also in the form of log-sum
  - Monte Carlo estimates for each  $v \in P$ !

Maximum log-likelihood learning

$$\nabla_{w_{ij}} L(W) = \frac{1}{|P|} \sum_{v \in P} E_h[y_i y_j] - E_{y'}[y'_i y'_j]$$

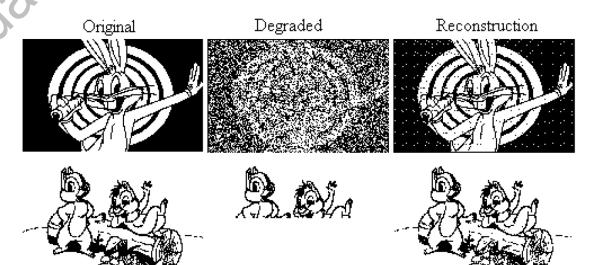
- Second term
  - Freely generate samples w.r.t. p(y)
  - Random initialization, cyclic Gibbs sampling
- First term
  - Generate samples w.r.t. p(y) conditioned on a fixed v
  - Randomly initialize *h*, run Gibbs sampling over *h*

- Overall Training
  - Initialize W
  - For  $v \in P$ , fixed the visible neurons, run Gibbs sampling to get K samples
    - Collect all conditioned samples as S<sub>c</sub>
  - Randomly initialize all neurons, run Gibbs sampling to get M samples
    - Collect free samples as S
  - Maximize log-likelihood with  $N_pK + M$  Monte-Carlo samples

 $\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{y \in S_c} y_i y_j - \frac{1}{M} \sum_{y' \in S} y'_i y'_j$ •  $w_{ij} \leftarrow w_{ij} + \eta \nabla_{w_{ij}} L(W)$ 

#### Boltzmann Machine

- Summary
  - A stochastic version of Hopfield Network
    - Nice mathematical properties
    - Large capacity for storing patterns (with hidden neurons)
  - Pattern generation
    - Gibbs sampling
  - Pattern completion
    - Conditioned Gibbs sampling
  - Classification??
    - y = (v, h, c), c is label
    - c as a one-hot vector (0-1 variables)
    - Posterior P(c|v)
    - Even conditional generation:  $P_{Co}(\mathcal{V}_{Ig} \mathcal{L}_{0})$ ,  $I_{IS, Tsinghua University}$



Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

#### Boltzmann Machine

ring 2024

• The issue

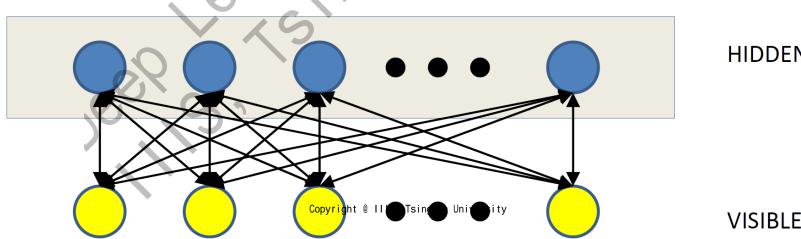
3/8

- Training is hard!
- Gibbs sampling may take a very long time to converge
  - also called *mixing-time*
- Not really applicable for large problems
- Can we design a better structure for faster Gibbs sampling mixing?

72

## Restricted Boltzmann Machine

- A particularly structured Boltzmann Machine
  - A partitioned structure
  - Hidden neurons are only connected to visible neurons
  - No intra-layer connections
  - Invented under the name Harmonium by Paul Smolensky in 1986
  - Became promise after Hinton invented fast learning algorithms in mid-2000



HIDDEN

## Restricted Boltzmann Machine

- Computation Rules: same as Boltzmann machine
  - Hidden neurons  $h_i$ 
    - $z_i = \sum_j w_{ij} v_j$ ,  $P(h_i = 1 | v_j) = \frac{1}{1 + \exp(-z_i)}$
  - Visible neurons  $v_i$

$$z_j = \sum_i^j w_{ij} h_i$$
,  $P(v_j = 1 | h_i) = \frac{1}{1 + \exp(-z_j)}$ 

Iterative Sampling!



VISIBLE

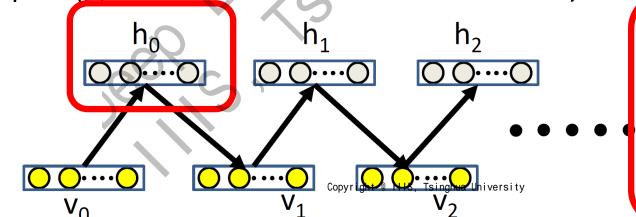
73

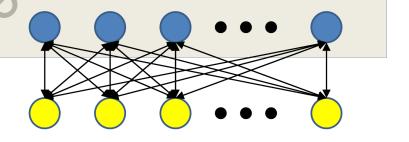
## Restricted Boltzmann Machine

• Sampling

3/8

- Randomly initialize visible neurons  $v_0$
- Iterative between hidden and visible neurons
- Get final sample  $(v_{\infty}, h_{\infty})$
- Conditioned sampling?
  - Initialize  $v_0$  as the desired pattern
  - Sample *h*<sub>0</sub> (the conditional distribution is exact!)





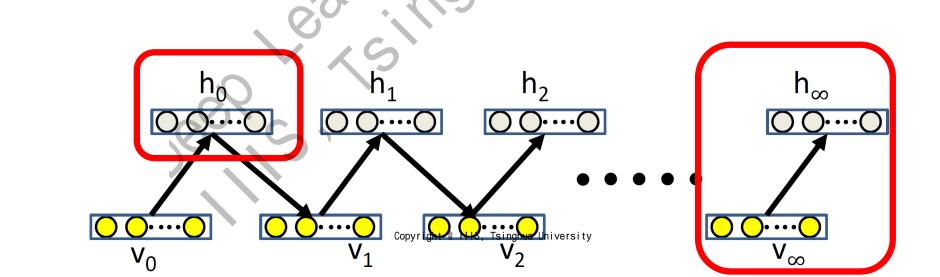
VISIBLE

HIDDEN

OpenPsi @ IIIS

3/8

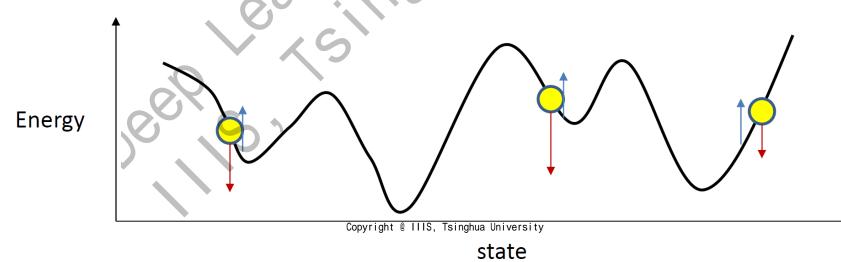
- Maximum Likelihood Estimate  $\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{v \in P} v_{0_i} h_{0_j} - \frac{1}{M} \sum_{v \infty_i} v_{\infty_i} h_{\infty_j}$ 
  - No need to lift up the entire energy landscape ... (recap)



• Maximum Likelihood Estimate

$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{v \in P} v_{0_i} h_{0_j} - \frac{1}{M} \sum_{v \sim i} v_{\infty_i} h_{\infty_j}$$

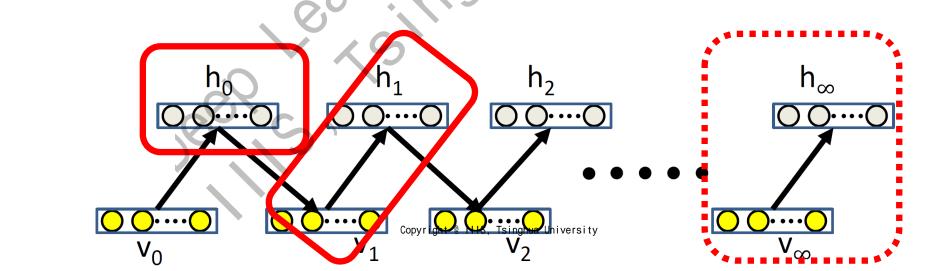
- We can starting sampling with a given  $v_0$ 
  - Raising the neighborhood of the desired patterns will be sufficient



76

3/8

- Maximum Likelihood Estimate  $\nabla_{w_{ij}} L(W) = \frac{1}{N_P K} \sum_{v \in P} v_{0_i} h_{0_j} - \frac{1}{M} \sum_{v \infty_i} v_{\infty_i} h_{\infty_j}$ 
  - Directly run Gibbs sampling from  $v_0$  for 3 steps will be sufficient!

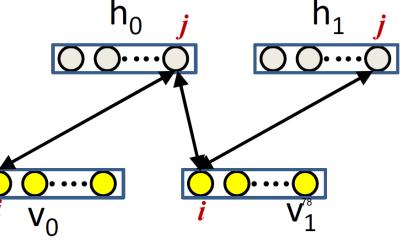


## Restricted Boltzmann Machine

• Maximum Likelihood Estimate

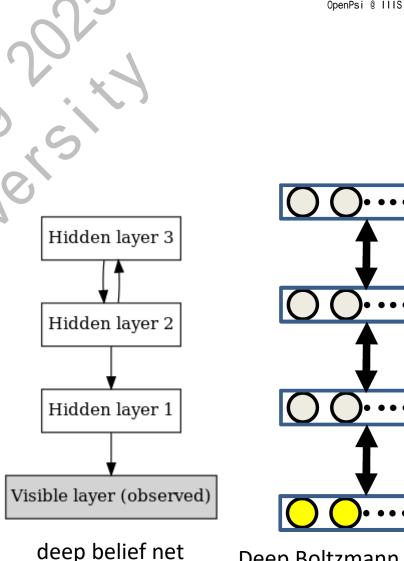
$$\nabla_{w_{ij}} L(W) = \frac{1}{N_P} \sum_{v \in P} v_{0i} h_{0j} - v_{1i} h_{1j}$$

- Only 3 Gibbs sampling steps are needed!
- We can also extend (R)BMs to to continuous values!
  - If we can explicitly sample from  $P(y_i|y_{j\neq i})$
  - Exponential family! (FYI 🙂)
    - "Exponential Family Harmoniums with an Application to Information Retrieval", Welling et al., 2004

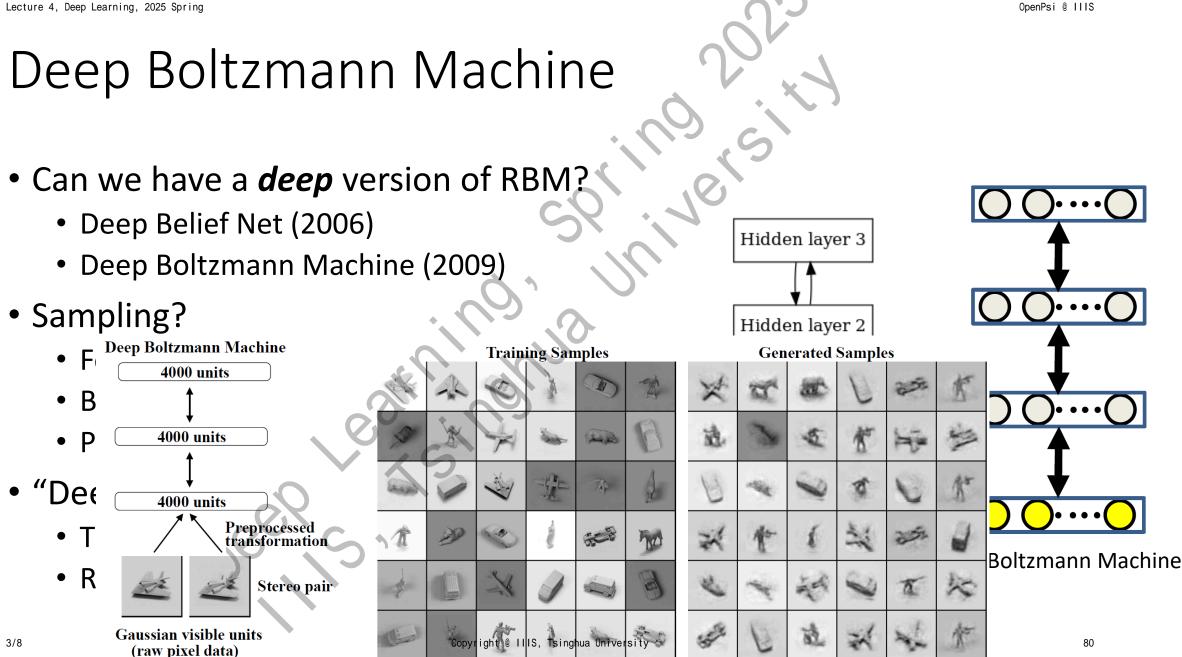


#### Deep Boltzmann Machine

- Can we have a *deep* version of RBM?
  - Deep Belief Net (2006)
  - Deep Boltzmann Machine (2009)
- Sampling?
  - Forward pass: bottom-up
  - Backward pass: top-down
  - Practical Trick: Layer-by-layer pretraining
- "Deep Boltzmann Machine", AISTATS 2009
  - The very first deep generative model
  - Ruslan Salakhutdinov & Geoffrey Hinton



Lecture 4, Deep Learning, 2025 Spring



# Lecture 4, Deep Learning, 2025 Spring obel Prize in Physics 2024



© Nobel Prize Outreach. Photo: Nanaka Adachi John J. Hopfield

Prize share: 1/2

3/8

© Nobel Prize Outreach. Photo: Clément Morin



Prize share: 1/2



### Today's Lecture: Energy-Based Models

- A particularly flexible and general form of generative model
- Part 1: Hopfield Network
  - The simplest model that can memorize and generate patterns
- Part 2: Boltzmann Machine
  - The first deep generative model
- Part 3: General Energy-Based Models & Sampling Methods

#### **Energy-Based Model**

- Goal of generative model
  - A probability distribution of "patterns" P(x)
- Requirement

  - $P(x) \ge 0$  (non-negative)  $\int_x P(x) dx = 1$  (sum to 1)
- Energy-Based Model
  - Energy function:  $E(x; \theta)$  parameterized by  $\theta$
  - $P(x) = \frac{1}{z} \exp(-E(x;\theta))$
  - $Z = \int_{x} \exp(-E(x;\theta)) dx$  partition function

Why use exp() function? e.g. |x| or  $|x|^2$ 

#### **Energy-Based Model**

• A particular class of density function

$$P(x) = \frac{1}{Z} \exp(-E(x;\theta))$$

#### • Pros

- Common in statistical physics
- Compatible with log-probability measure to capture large variations
- Exponential family (e.g., Gaussian)
- Extremely flexible, i.e., use any E(x) you like (e.g., any  $f(x): \mathbb{R}^d \to \mathbb{R}$ , even CNNs)
- Cons
  - Non-trivial to sample and train due to the partition function  ${\cal Z}$

# Energy-Based Model: Training ingreit

• A particular class of density function

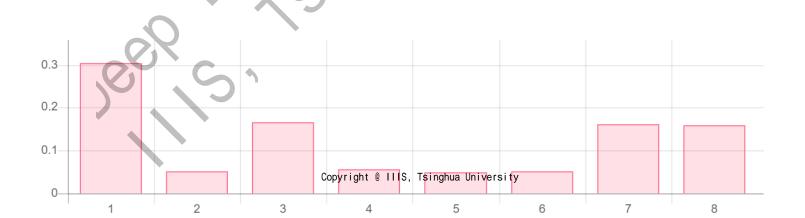
$$P(x) = \frac{1}{Z} \exp(-E(x;\theta))$$

- Maximum Likelihood Training
  - $L(\theta) = \log P(x) = -E(x; \theta) \log Z(\theta)$
  - Monte-Carlo estimates for partition function  $Z(\theta)$
- Contrastive Divergence Algorithm
  - $\nabla_{\theta} L(\theta) \approx \nabla_{\theta} \left( -E(x_{train}; \theta) + E(x_{sample}; \theta) \right)$
  - Generating samples is the foundation for both training and generation!
- How to sample from an general energy-based model?
  - Or in general: sample from an arbitrary distribution p(x)

3/8

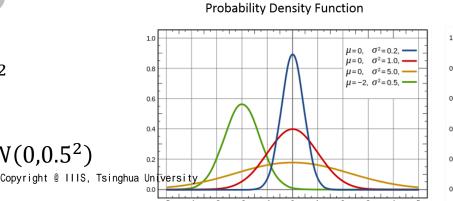
#### Sampling Methods

- Goal: sampling from P(x)
  - Assume we have a valid probability measure
  - P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)
- Let's start from an easy example
  - Categorical distribution?
  - Solution: uniform sampling, find the category with cumulative density
    - The mapping from CDF to value is called Inverse distribution function (quantile function)

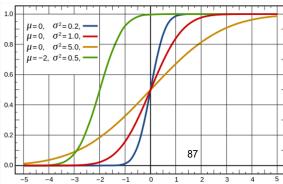


86

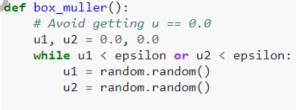
- Goal: sampling from P(x)
- r I I P. FSI • Assume we have a valid probability measure
  - P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)
- Let's start from an easy example
  - Categorical distribution
  - Gaussian distribution?
    - No closed-form CDF!
    - Central-limit theorem
      - Sample  $X_i \sim Beroulli(0.5)$
      - $E[X_i] = 0.5; Var[X_i] = 0.5^2$
      - $S_N = \frac{1}{N} \sum_{i=1}^N X_i$
      - As  $N \to \infty$ ,  $\sqrt{N}(S_N 0.5) \sim N(0, 0.5^2)$



#### **Cumulative Density Function**



- Goal: sampling from P(x)
  - Assume we have a valid probability measure
  - P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)
- Let's start from an easy example
  - Categorical distribution
  - Gaussian distribution?
    - No closed-form CDF!
    - Central-limit theorem
    - Box–Muller transform
      - Most practical method (FYI)
      - Uniform  $\rightarrow$  Normal
      - Polar form transformation

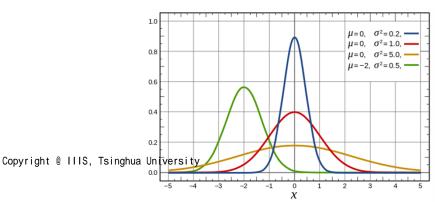


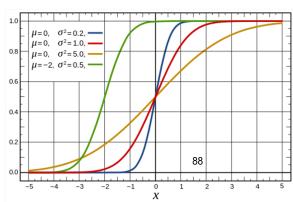
G

```
n1 = math.sqrt(-2 * math.log(u1)) * math.cos(2 * math.pi * u2)
n2 = math.sqrt(-2 * math.log(u1)) * math.sin(2 * math.pi * u2)
return n1, n2
```

#### **Probability Density Function**

#### **Cumulative Density Function**





- Goal: sampling from P(x)
  - Assume we have a valid probability measure
  - P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)
- Let's start from an easy example
  - Categorical distribution
  - Gaussian distribution?
    - No closed-form CDF!
    - Central-limit theorem
    - Box–Muller transform
    - General case  $x \sim N(\mu, \sigma^2)$
    - High-dimensional case  $x \sim N(\mu, \Sigma)$ 
      - $z \sim N(0, I)$

3/8

```
• x = \Sigma z + \mu
```

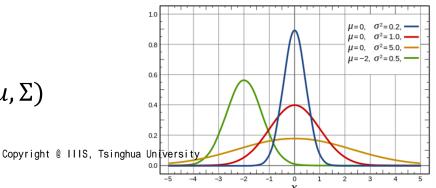
```
def box_muller():
    # Avoid getting u == 0.0
    u1, u2 = 0.0, 0.0
    while u1 < epsilon or u2 < epsilon:
        u1 = random.random()
        u2 = random.random()</pre>
```

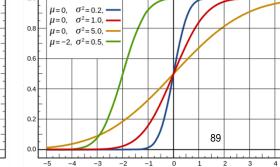
Ś

```
n1 = math.sqrt(-2 * math.log(u1)) * math.cos(2 * math.pi * u2)
n2 = math.sqrt(-2 * math.log(u1)) * math.sin(2 * math.pi * u2)
return n1, n2
```

#### Probability Density Function

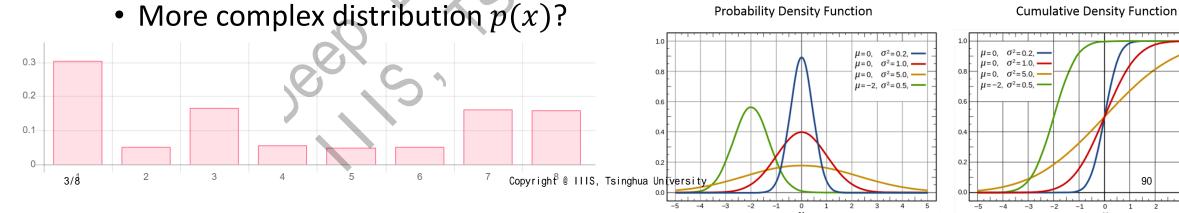
#### **Cumulative Density Function**

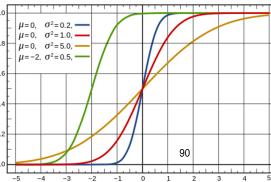




- Goal: sampling from P(x)
- .1.8 • Assume we have a valid probability measure
  - P(x) can be arbitrarily complex (e.g., high-dimensional, continuous, etc)
- Let's start from an easy example
  - Categorical distribution
  - Gaussian distribution
    - Idea: (1) use "easy" distributions to draw sample & (2) apply mathematical transform

.c





- Goal: sampling from p(x)
  - No CDF or nice mathematical property available
- Idea: weighted samples
  - sample from "easy" distribution q(x) (e.g., uniform)
  - Use p(x)/q(x) as the weight for the sample
- Importance Sampling
  - q(x) proposal distribution
  - $\frac{p(x)}{q(x)}$  importance weight
  - $\operatorname{E}_{x \sim p}[f(x)] = \operatorname{E}_{x \sim q}\left[\frac{p(x)}{q(x)}f(x)\right]$







10% 20%

Importance Sampling

-2

density function

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Probability density function (A.U.

20%

30%

Original density function

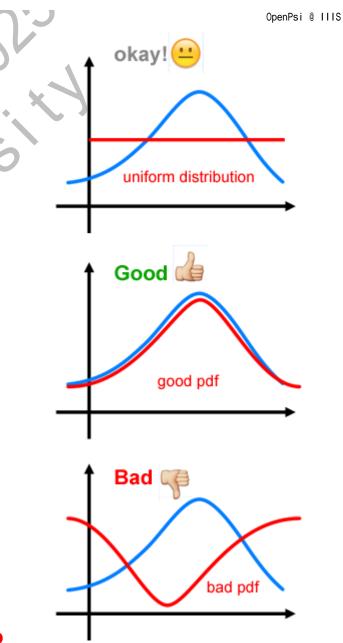
**4**91

2

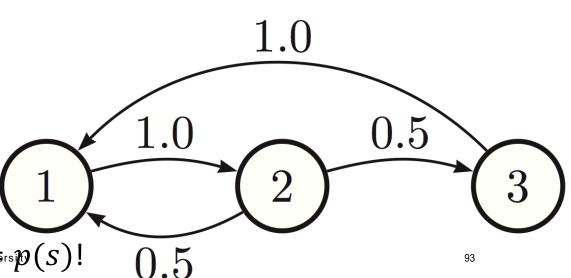
 $\sigma_{\text{dVt}}$  (A.U.)

- Goal: sampling from p(x)
  - No CDF or nice mathematical property available
- Idea: weighted samples
  - sample from "easy" distribution q(x) (e.g., uniform)
  - Use p(x)/q(x) as the weight
- Importance Sampling
  - q(x) proposal distribution
  - How to choose q(x)???
  - q(x) needs to similar to p(x)
    - Your homework 😊

#### What if we don't have a universally good proposal?



- Markov Chain
  - A state space S, a transition probability  $P(s_j | s_i) = T_{ij}$
  - T is the transition matrix
  - We also use  $T(s_i \rightarrow s_j)$  to denote  $T_{ij}$
- A Markov Chain has a stationary distribution with a proper T
  - Current distribution over states  $\pi_t$
  - Single step transition  $\pi_{t+1} = T\pi_t$
  - Stationary distribution  $\pi = T^{\infty}\pi_0$
- Sampling is easy!
- Goal: construct a Markov Chain
- With a desired stationary distribution p(s)!



- How to ensure  $\pi$  is a stationary distribution of a Markov Chain?
  - Detailed Balance (sufficient condition)  $\pi(s)T(s \rightarrow s') = \pi(s')T$

 $\rightarrow s)$ (5

- How to ensure  $\pi$  is a stationary distribution of a Markov Chain?
  - Detailed Balance (sufficient condition)  $\pi(s)T(s \to s') = \pi(s')T(s' \to s)$
  - Design a Markov chain satisfying detailed balance for desired density p(s)!

- How to ensure  $\pi$  is a stationary distribution of a Markov Chain?
  - Detailed Balance (sufficient condition)  $\pi(s)T(s \rightarrow s') = \pi(s')T(s' \rightarrow s)$
  - Design a Markov chain satisfying detailed balance for desired density p(s)!
- How to ensure a unique stationary distribution exist?
  - The Markov chain is ergodic (遍历性) ! min min  $\frac{T(z \to z')}{T(z \to z')} = \delta > 0$

*Intuitively: you can visit any desired state with positive probability from any state* 

• Examples:

$$\pi(z') = 0$$

$$T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{\rm se}$$

## Metropolis Hastings Algorithm

- Construct a valid Markov Chain  $T(s' \rightarrow s)$  for distribution p(s)
  - Detailed balance:  $p(s)T(s \rightarrow s') = p(s')T(s' \rightarrow s)$
  - Ergodicity
- Metropolis Hastings Algorithm
  - A proposal distribution q(s'|s) to produce next state s' based on s
  - Draw  $s' \sim q(s'|s)$
  - $\alpha = \min\left(1, \frac{p(s')q(s' \rightarrow s)}{p(s)q(s \rightarrow s')}\right)$  ( $q(s \rightarrow s')$  to denotes q(s'|s) for simplicity)
  - Transition to s' (accept) with probability  $\alpha$  (acceptance ratio);
  - O.w., stays at s (reject)
- MH constructs a valid Markov chain with a proper proposal q!
- <sup>3/8</sup> Homework ☺

- Choice of  $q(s \rightarrow s')$ 
  - Random proposal  $q(s \rightarrow s') = s + \text{noise}$  (i.e., Gaussian/Uniform Noise)
- Acceptance ratio for  $s \rightarrow s'$

• 
$$\alpha(s \to s') = \min\left(1, \frac{p(s')q(s' \to s)}{p(s)q(s \to s')}\right) = \min\left(1, \frac{p(s')}{p(s)}\right)$$

- MH sampling for the energy-based model  $p(s) = \frac{1}{z} \exp(-E(s))$  Random initialize  $s^0$ 

  - $s' \leftarrow q(s \rightarrow s')$
  - Transition to s' with probability  $\alpha(s \rightarrow s')$ ;
  - O.w., stays at s
  - Repeat

98

## Metropolis Hastings Algorithm: Example

- Choice of  $q(s \rightarrow s')$ 
  - Random proposal  $q(s \rightarrow s') = s + \text{noise}$  (i.e., Gaussian/Uniform Noise)
- Acceptance ratio for  $s \rightarrow s'$

• 
$$\alpha(s \to s') = \min\left(1, \frac{p(s')q(s' \to s)}{p(s)q(s \to s')}\right) = \min\left(1, \frac{p(s')}{p(s)}\right)$$

- MH sampling for the energy-based model  $p(s) = \frac{1}{z} \exp(-E(s))$  Random initialize  $s^0$ 

  - $s' \leftarrow s + \text{noise}$
  - Transition to s' with probability  $\alpha(s \rightarrow s')$ ;
  - O.w., stays at s
  - Repeat

## Metropolis Hastings Algorithm: Example

- Choice of  $q(s \rightarrow s')$ 
  - Random proposal  $q(s \rightarrow s') = s + \text{noise}$  (i.e., Gaussian/Uniform Noise)
- Acceptance ratio for  $s \rightarrow s'$

• 
$$\alpha(s \to s') = \min\left(1, \frac{p(s')q(s' \to s)}{p(s)q(s \to s')}\right) = \min\left(1, \frac{p(s')}{p(s)}\right)$$

- MH sampling for the energy-based model  $p(s) = \frac{1}{z} \exp(-E(s))$  Random initialize  $s^0$ 

  - $s' \leftarrow s + \text{noise}$
  - Transition to s' with probability  $\min\left(1, \frac{p(s')}{n(s)}\right)$ ;

No partition function involved!

- O.w., stays at s
- Repeat 3/8

# Metropolis Hastings Algorithm: Example

- Choice of  $q(s \rightarrow s')$
- Choice of  $q(s \rightarrow s')$  Random proposal  $q(s \rightarrow s') = s + \text{noise}$  (i.e., Gaussian/Uniform Noise)
- Acceptance ratio for  $s \rightarrow s'$

• 
$$\alpha(s \to s') = \min\left(1, \frac{p(s')q(s' \to s)}{p(s)q(s \to s')}\right) = \min\left(1, \frac{p(s')}{p(s)}\right)$$

- MH sampling for the energy-based model  $p(s) = \frac{1}{z} \exp(-E(s))$  Random initialize  $s^0$ 

  - For each iteration t
    - $s' \leftarrow s^t + \text{noise}$
    - If  $E(s') < E(s^t)$ ; then accept  $s^{t+1} \leftarrow s'$
    - Else accept  $s^{t+1} \leftarrow s'$  with probability  $\exp(E(s^t) E(s'))$
- 3/8 Repeat

## Metropolis Hastings Algorithm

- The simplest way to construct a valid Markov chain
  - Flexible, simple and general
  - Quiz: proposal q in MH v.s. Importance Sampling
    - A: q(s'|s) v.s. q(s); in MH, q generates local samples; in IS, q outputs "blind" guesses
- Issues
  - Curse of dimensionality: samples a completely new state
  - Acceptance ratio: what if acceptance rate is low?

## Metropolis Hastings Algorithm

- The simplest way to construct a valid Markov chain
  - Flexible, simple and general
  - Quiz: proposal q in MH v.s. Importance Sampling
    - A: q(s'|s) v.s. q(s); in MH, q generates local samples; in IS, q outputs "blind" guesses
- Issues
  - Curse of dimensionality: samples a completely new state
  - Acceptance ratio: what if acceptance rate is low?
- Can we design a proposal distribution  $q(s \rightarrow s')$  such that it always gets accepted?

## Gibbs Sampling

- Gibbs sampling
  - $s = (s_0, s_1, \dots, s_N)$ , we construct a coordinate-wise  $q(s_i \rightarrow s'_i)$
  - $q(s_i \rightarrow s'_i) = p(s'_i | s_{j \neq i})$  (conditional distribution)
- Dimensionality
  - Sample a single coordinate per step.
- Gibbs sampling always get accepted!
  - Acceptance ratio is always 1,  $\alpha(s_i \rightarrow s'_i) = 1$  Prove it in your homework  $\bigcirc$
- Assumption

3/8

- An easy to sample conditional distribution
  - Conjugate Prior and Exponential Family (<u>https://en.wikipedia.org/wiki/Conjugate\_prior</u>)
- What if no closed-form posterior?
  - Learn a neural proposal to approximate the true posterior!  $\odot$
- (meta-learning MCMC proposals, Wang, Wu, et al NIPS2018)

- What we have learned so far ...
  - Importance Sampling
    - Simplest solution by any proposal distribution
  - Metropolis-Hastings algorithm
    - Good local proposal  $\rightarrow$  high acceptance ratio
  - Gibbs sampling
    - Posterior is easy-to-sample
    - The "default" method for machine learning among 2002~2012
- General Issues for MCMC methods
  - Slow convergence due to sampling (recap: SGD v.s. GD)
  - Can we use gradient information for MCMC?
    - Energy function is differentiable!

- MCMC with Langevin dynamics
  - "Bayesian learning via stochastic gradient langevin dynamics"
    - ICML 2011, Max Welling& Yee Whye The (ICML 2021 test-of-time award)
  - Given N data  $X_1, ..., X_N$ , define  $p(\theta \rightarrow \theta')$  by

$$\theta' \leftarrow \theta + \frac{\epsilon_t}{2} \left( \nabla_{\theta} \log p(\theta) + \sum_i \nabla_{\theta} \log P(x_i | \theta) \right) + N(0, \epsilon_t I)$$

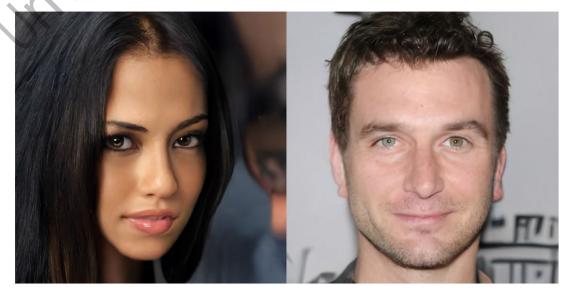
- Condition for a valid Markov Chain
  - $\sum_t \epsilon_t = \infty$  and  $\sum_t \epsilon_t^2 < \infty$
  - Interpretation
    - (stochastic) gradient descent first ( $\nabla_{\theta}$  is large); MCMC around local minimum ( $\nabla_{\theta} \approx 0$ )
  - No need of MH acceptance rule
- Additional Reading:
  - Hamiltonian Monte Carlo (SGD with momentum): https://arxiv.org/pdf/1701.02434.pdf
- 3/8 https://arogozhnikov.github.io/2016/12/19/markov\_schaim\_monte\_carlo.html

#### Summary

- Hopfield Network
  - The first generative neural network<sup>C</sup>
  - Undirected complete graph
- Boltzmann Machine
  - A probabilistic interpretation of Hopfield Network
  - The first deep generative model
- Energy-Based
  - Extremely flexible and powerful, designed to be multi-modal
  - Hard to sample and learn
  - Sampling is the core challenge!!

#### What's Next: Non-Sampling Methods

- Approximate Bayesian Inference
  - Variational Inference (next lecture ③)
    - Learn an parameterized distribution to approximate the true posterior
- Design a model from which we can easily draw sample!
  - Lectures 6 & 7a
- Modern energy-based models
  - Scoring matching
- <sup>3/8</sup> Lecture 7b



Song et. al., 2021 OpenAI Blog: <u>https://openai.com/blog/energy-based-models/</u>

#### Thanks!

S arning